Routing Workshop II

Contact: training@apnic.net

WROU02_v1.0

Overview

Routing Workshop (3 Days)

- Introduction to IP Routing
- IPv6 Address Structure
- Routing Lab Topology Overview
- Operation of OSPF Routing Protocol
- Lab Exercise on Basic Router and OSPF Dynamic Routing Configuration
- Basic BGP Operation
- BGP Attributes and Path Selection Process
- BGP Scaling Techniques
- Lab Exercise on iBGP, eBGP, RR, Peer group etc
- Internet Exchange [IX] Policy Overview and Configuration requirement

Overview

Routing Workshop (3 Days)

- Introduction to IP Routing

- IPv6 Address Structure
- Routing Lab Topology Overview
- Operation of OSPF Routing Protocol
- Lab Exercise on Basic Router and OSPF Dynamic Routing Configuration
- Basic BGP Operation
- BGP Attributes and Path Selection Process
- BGP Scaling Techniques
- Lab Exercise on iBGP, eBGP, RR, Peer group etc
- Internet Exchange [IX] Policy Overview and Configuration requirement

IPv4

- Internet uses IPv4
 - Addresses are 32 bits long
 - Range from 1.0.0.0 to 223.255.255.255
 - 0.0.0.0 to 0.255.255.255 and 224.0.0.0 to 255.255.255.255 have "special" uses
- IPv4 address has a network portion and a host portion

IPv4 address format

- Address and subnet mask
 - written as
 - 12.34.56.78 255.255.255.0 or
 - 12.34.56.78/24
 - mask represents the number of network bits in the 32 bit address
 - the remaining bits are the host bits

What does a router do?

• ?

A day in a life of a router

- find path
- forward packet, forward packet, forward packet, forward packet...
- find alternate path
- forward packet, forward packet, forward packet, forward packet...
- repeat until powered off

Routing versus Forwarding

- Routing = building maps and giving directions
- Forwarding = moving packets between interfaces according to the "directions"

IP Routing – finding the path

- Path derived from information received from a routing protocol
- Several alternative paths may exist
 - best path stored in forwarding table
- Decisions are updated periodically or as topology changes (event driven)
- Decisions are based on:
 - topology, policies and metrics (hop count, filtering, delay, bandwidth, etc.)

IP route lookup

- Based on destination IP address
- "longest match" routing
 - More specific prefix preferred over less specific prefix
 - Example: packet with destination of 10.1.1.1/32 is sent to the router announcing 10.1/16 rather than the router announcing 10/8.

IP route lookup

IP Forwarding

- Router decides which interface a packet is sent to
- Forwarding table populated by routing process
- Forwarding decisions:
 - destination address
 - class of service (fair queuing, precedence, others)
 - local requirements (packet filtering)
- Forwarding is usually aided by special hardware

Routing Tables Feed the Forwarding Table

RIBs and FIBs

- FIB is the Forwarding Table
 - It contains destinations and the interfaces to get to those destinations
 - Used by the router to figure out where to send the packet
 - Careful! Some people still call this a route!
- RIB is the Routing Table
 - It contains a list of all the destinations and the various next hops used to get to those destinations – and lots of other information too!
 - One destination can have lots of possible next-hops only the best next-hop goes into the FIB

Explicit versus Default Routing

- Default:
 - simple, cheap (cycles, memory, bandwidth)
 - low granularity (metric games)
- Explicit (default free zone)
 - high overhead, complex, high cost, high granularity
- Hybrid
 - minimise overhead
 - provide useful granularity
 - requires some filtering knowledge

Egress Traffic

- How packets leave your network
- Egress traffic depends on:
 - route availability (what others send you)
 - route acceptance (what you accept from others)
 - policy and tuning (what you do with routes from others)
 - Peering and transit agreements

Ingress Traffic

- How packets get to your network and your customers' networks
- Ingress traffic depends on:
 - what information you send and to whom
 - based on your addressing and AS' s
 - based on others' policy (what they accept from you and what they do with it)

Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control

Definition of terms

- Neighbours
 - AS's which directly exchange routing information
 - Routers which exchange routing information
- Announce
 - send routing information to a neighbour
- Accept
 - receive and use routing information sent by a neighbour
- Originate
 - insert routing information into external announcements (usually as a result of the IGP)
- Peers
 - routers in neighbouring AS's or within one AS which exchange routing and policy information

Routing flow and packet flow

For networks in AS1 and AS2 to communicate:

AS1 must announce to AS2

AS2 must accept from AS1

AS2 must announce to AS1

AS1 must accept from AS2

Routing flow and Traffic flow

- Traffic flow is always in the opposite direction of the flow of Routing information
 - Filtering outgoing routing information inhibits traffic flow inbound
 - Filtering inbound routing information inhibits traffic flow outbound

Routing Flow/Packet Flow: With multiple ASes

- For net N1 in AS1 to send traffic to net N16 in AS16:
 - AS16 must originate and announce N16 to AS8.
 - AS8 must accept N16 from AS16.
 - AS8 must forward announcement of N16 to AS1 or AS34.
 - AS1 must accept N16 from AS8 or AS34.
- For two-way packet flow, similar policies must exist for N1

Routing Flow/Packet Flow: With multiple ASes

• As multiple paths between sites are implemented it is easy to see how policies can become quite complex.

Routing Policy

- Used to control traffic flow in and out of an ISP network
- ISP makes decisions on what routing information to accept and discard from its neighbours
 - Individual routes
 - Routes originated by specific ASes
 - Routes traversing specific ASes
 - Routes belonging to other groupings
 - Groupings which you define as you see fit

Routing Policy Limitations

- AS99 uses red link for traffic to the red AS and the green link for remaining traffic
- To implement this policy, AS99 has to:
 - Accept routes originating from the red AS on the red link
 - Accept all other routes on the green link

Routing Policy Limitations

- AS99 would like packets coming from the green AS to use the green link.
- But unless AS22 cooperates in pushing traffic from the green AS down the green link, there is very little that AS99 can do to achieve this aim

Routing Policy Issues

- End May 2012:
 - 400000+ prefixes
 - Not realistic to set policy on all of them individually
 - 40000 origin AS' s
 - Too many to try and create individual policies for
- Routes tied to a specific AS or path may be unstable regardless of connectivity
- Solution: Groups of AS's are a natural abstraction for filtering purposes

Questions?

APNIC

Overview

Routing Workshop (3 Days)

- Introduction to IP Routing

– IPv6 Address Structure

- Routing Lab Topology Overview
- Operation of OSPF Routing Protocol
- Lab Exercise on Basic Router and OSPF Dynamic Routing Configuration
- Basic BGP Operation
- BGP Attributes and Path Selection Process
- BGP Scaling Techniques
- Lab Exercise on iBGP, eBGP, RR, Peer group etc
- Internet Exchange [IX] Policy Overview and Configuration requirement

IPv6 Addressing

- An IPv6 address is 128 bits long
- In hex 4 bit (nibble) is represented by a hex digit
- So 128 bit is reduced down to 32 hex digit

IPv6 Address Representation

- Hexadecimal values of eight 16 bit fields
 - X:X:X:X:X:X:X:X (X=16 bit number, ex: A2FE)
 - 16 bit number is converted to a 4 digit hexadecimal number
- Example:
 - FE38:DCE3:124C:C1A2:BA03:6735:EF1C:683D
 - Abbreviated form of address
 - 4EED:0023:0000:0000:0000:036E:1250:2B00
 - →4EED:23:0:0:0:36E:1250:2B00
 - →4EED:23::36E:1250:2B00
 - (Null value can be used only once)

IPv6 addressing structure

IPv6 addressing model

- IPv6 Address type
 - Unicast
 - An identifier for a single interface
 - Anycast
 - An identifier for a set of interfaces
 - Multicast
 - An identifier for a group of nodes

RFC

429

Addresses Without a Network Prefix

- Localhost ::1/128
- Unspecified Address ::/128
- IPv4-mapped IPv6 address ::ffff/96 [a.b.c.d]
- IPv4-compatible IPv6 address ::/96 [a.b.c.d]

Local Addresses With Network Prefix

- Link Local Address
 - A special address used to communicate within the local link of an interface
 - i.e. anyone on the link as host or router
 - This address in packet destination that packet would never pass through a router
 - fe80::/10

Local Addresses With Network Prefix

- Unique Local IPv6 Unicast Address
 - Addresses similar to the RFC 1918 / private address like in IPv4 but will ensure uniqueness
 - A part of the prefix (40 bits) are generated using a pseudo-random algorithm and it's improbable that two generated ones are equal
 - fc00::/7
 - Example webtools to generate ULA prefix http://www.sixxs.net/tools/grh/ula/ http://www.goebel-consult.de/ipv6/createLULA

Global Addresses With Network Prefix

- IPV6 Global Unicast Address
 - Global Unicast Range: 0010 2000::/3

0011 3000::/3

- All five RIRs are given a /12 from the /3 to further distribute within the RIR region
 - APNIC 2400:0000::/12
 - ARIN 2600:0000::/12
 - AfriNIC 2C00:0000::/12
 - LACNIC 2800:0000::/12
 - Ripe NCC 2A00:0000::/12

Examples and Documentation Prefix

- Two address ranges are reserved for examples and documentation purpose by RFC 3849
 - For example 3fff:ffff::/32
 - For documentation 2001:0DB8::/32

Interface ID

- The lowest-order 64-bit field addresses may be assigned in several different ways:
 - auto-configured from a 48-bit MAC address expanded into a 64-bit EUI-64
 - assigned via DHCP
 - manually configured
 - auto-generated pseudo-random number
 - possibly other methods in the future

Questions?

APNIC

Overview

Routing Workshop (3 Days)

- Introduction to IP Routing
- IPv6 Address Structure

- Routing Lab Topology Overview

- Operation of OSPF Routing Protocol
- Lab Exercise on Basic Router and OSPF Dynamic Routing Configuration
- Basic BGP Operation
- BGP Attributes and Path Selection Process
- BGP Scaling Techniques
- Lab Exercise on iBGP, eBGP, RR, Peer group etc
- Internet Exchange [IX] Policy Overview and Configuration requirement

- Scenario:
 - Training ISP has 4 main operating area or region
 - Each region has 2 small POP
 - Each region will have one datacenter to host content
 - Regional network are inter-connected with multiple link

Training ISP Topology Diagram

- Regional Network:
 - Each regional network will have 3 routers
 - 1 Core & 2 Edge Routers
 - 2 Point of Presence (POP) for every region
 - POP will use a router to terminate customer network i.e Edge Router
 - Each POP is an aggregation point of ISP customer

- Access Network:
 - Connection between customer network & Edge router
 - Usually 10 to 100 MBPS link
 - Separate routing policy from most of ISP
 - Training ISP will connect them on edge router with separate customer IP prefix

- Transport Link:
 - Inter-connection between regional core router
 - Higher data transmission capacity then access link
 - Training ISP has 2 transport link for link redundancy
 - 2 Transport link i.e Purple link & Green link are connected to two career grade switch

Training ISP Core IP Backbone

- Design Consideration:
 - Each regional network should have address summarization capability for customer block and CS link WAN.
 - Prefix planning should have scalability option for next couple of years for both customer block and infrastructure
 - No Summarization require for infrastructure WAN and loopback address

- Design Consideration:
 - All WAN link should be ICMP reachable for link monitoring purpose (At least from designated host)
 - Conservation will get high preference for IPv4 address planning and aggregation will get high preference for IPv6 address planning.

- Design Consideration:
 - OSPF is running in ISP network to carry infrastructure IP prefix
 - Each region is a separate OSPF area
 - Transport core is in OSPF area 0
 - Customer will connect on either static or eBGP (Not OSPF)
 - iBGP will carry external prefix within ISP core IP network

- IPv6 address plan consideration:
 - Big IPv6 address space can cause very very large routing table size
 - Most transit service provider apply IPv6 aggregation prefix filter (i.e. anything other then /48 & <=/32 prefix size
 - Prefix announcement need to send to Internet should be either /32 or /48 bit boundary

- IPv6 address plan consideration (RFC3177):
 - WAN link can be used on /64 bit boundary
 - End site/Customer sub allocation can be made between / 48~/64 bit boundary
 - APNIC Utilization/HD ratio will be calculated based on /56 end site assignment/sub-allocation

APNIC

Addressing Plans – ISP Infrastructure

- What about LANs?
 - /64 per LAN
- What about Point-to-Point links?
 - Protocol design expectation is that /64 is used
 - /127 now recommended/standardised
 - http://www.rfc-editor.org/rfc/rfc6164.txt
 - (reserve /64 for the link, but address it as a /127)
 - Other options:
 - /126s are being used (mirrors IPv4 /30)
 - /112s are being used

- Leaves final 16 bits free for node IDs

• Some discussion about /80s, /96s and /120s too

Addressing Plans – ISP Infrastructure

- ISPs should receive /32 from their RIR
- Address block for router loop-back interfaces
 - Generally number all loopbacks out of one /48
 - /128 per loopback
- Address block for infrastructure
 - /48 allows 65k subnets
 - /48 per region (for the largest international networks)
 - /48 for whole backbone (for the majority of networks)
 - Summarise between sites if it makes sense

Addressing Plans – Customer

- Customers get one /48
 - Unless they have more than 65k subnets in which case they get a second /48 (and so on)
- In typical deployments today:
 - Several ISPs give small customers a /56 or single LAN end-sites a / 64, e.g.:
 - /64 if end-site will only ever be a LAN
 - /56 for medium end-sites (e.g. small business)
 - /48 for large end-sites
 - (This is another very active discussion area)

Addressing Plans – Advice

- Customer address assignments should not be reserved or assigned on a per PoP basis
 - Same principle as for IPv4
 - ISP iBGP carries customer nets
 - Aggregation within the iBGP not required and usually not desirable
 - Aggregation in eBGP is very necessary
- Backbone infrastructure assignments:
 - Number out of a single /48
 - Operational simplicity and security
 - Aggregate to minimise size of the IGP

Addressing Plans Planning

- Registries will usually allocate the next block to be contiguous with the first allocation
 - Minimum allocation is /32
 - Very likely that subsequent allocation will make this up to a /31
 - So plan accordingly

Example Address Plan

- IPv6 Allocation Form Registry is
 2406:6400::/32
- IPv4 Allocation From Registry is
 - 172.16.0.0/19

Table					
Block#	Prefix	Description	Reverse Domain	SOR	Registration
1	2406:6400::/32	Parent Block	0.0.4.6.6.0.4.2.ip6.arpa.	N/A	APNIC
2	2406:6400:0000:0000::/36	Infrastructure	0.0.0.4.6.6.0.4.2.ip6.arpa.	No	Optional
	2406:6400:1000:0000::/36				
	2406:6400:2000:0000::/36				
	2406:6400:3000:0000::/36				
	2406:6400:4000:0000::/36				
	2406:6400:5000:0000::/36				
	2406:6400:6000:0000::/36				
	2406:6400:7000:0000::/36				
3	2406:6400:8000:0000::/36	Customer network Region 1	8.0.0.4.6.6.0.4.2.ip6.arpa.	Not yet	Optional
	2406:6400:9000:0000::/36				
4	2406:6400:a000:0000::/36	Customer network Region 2	a.0.0.4.6.6.0.4.2.ip6.arpa.	Not yet	Optional
	2406:6400:b000:0000::/36				
5	2406:6400:c000:0000::/36	Customer network Region 3	c.0.0.4.6.6.0.4.2.ip6.arpa.	Not yet	Optional
	2406:6400:d000:0000::/36				
6	2406:6400:e000:0000::/36	Customer network Region 4	e.0.0.4.6.6.0.4.2.ip6.arpa.	Not yet	Optional
	2406:6400:f000:0000::/36				

Table	2:	Тор	level	summar	rization	option	infrastruc	ture &	customer

Block#	Prefix	Description	Reverse Domain
7	2406:6400:8000:0000::/35	CS net summary region1 [R2]	2x/36 arpa domain
8	2406:6400:a000:0000::/35	CS net summary region2 [R5]	2x/36 arpa domain
9	2406:6400:c000:0000::/35	CS net summary region3 [R8]	2x/36 arpa domain
10	2406:6400:e000:0000::/35	CS net summary region4 [R11]	2x/36 arpa domain

APN

Table 3: Detail distribution infrastructure					
Block#	Prefix	Description	Reverse Domain	SOR	Registration
2	2406:6400:0000:0000::/36	Infrastructure	0.0.0.4.6.6.0.4.2.ip6.arpa.	No	Optional
11	2406:6400:0000:0000::/40	Loopback, Transport & WAN [Infra+CS]	0.0.0.0.4.6.6.0.4.2.ip6.arpa.	No	Optional
	2406:6400:0100:0000::/40				
	2406:6400:0200:0000::/40				
	2406:6400:0300:0000::/40				
	2406:6400:0400:0000::/40				
	2406:6400:0500:0000::/40				
	2406:6400:0600:0000::/40				
	2406:6400:0700:0000::/40				
16	2406:6400:0800:0000::/40	R2 DC	8.0.0.0.4.6.6.0.4.2.ip6.arpa.	No	Recommeded
	2406:6400:0900:0000::/40				
17	2406:6400:0a00:0000::/40	R5 DC	a.0.0.0.4.6.6.0.4.2.ip6.arpa.	No	Recommeded
	2406:6400:0b00:0000::/40				
18	2406:6400:0c00:0000::/40	R8 DC	c.0.0.0.4.6.6.0.4.2.ip6.arpa.	No	Recommeded
	2406:6400:0d00:0000::/40				
19	2406:6400:0e00:0000::/40	R11 DC	e.0.0.0.4.6.6.0.4.2.ip6.arpa.	No	Recommeded
	2406:6400:0f00:0000::/40				

Table 4: Datacenter prefix summarization options

Block#	Prefix	Description	Reverse Domain
12	2406:6400:0800:0000::/39	Region 1 DC Summary [R2]	
13	2406:6400:0a00:0000::/39	Region 2 DC Summary [R5]	
14	2406:6400:0c00:0000::/39	Region 3 DC Summary [R8]	
15	2406:6400:0e00:0000::/39	Region 4 DC Summary [R11]	

Table 5: Further detail loopback, transport & infrastructure WAN					
Block#	Prefix	Description	Reverse Domain	SOR	Registration
11	2406:6400:0000:0000::/40	Loopback, Transport & Infra WAN	0.0.0.0.4.6.6.0.4.2.ip6.arpa.		
20	2406:6400:0000:0000::/48	Loopback		No	Recommeded
	2406:6400:0001:0000::/48				
21	2406:6400:0002:0000::/48	Purple Transport		No	Recommeded
22	2406:6400:0003:0000::/48	Green Transport		No	Recommeded
	2406:6400:0004:0000::/48				
	2406:6400:0005:0000::/48				
	2406:6400:0006:0000::/48				
	2406:6400:0007:0000::/48				
	2406:6400:0008:0000::/48				
	2406:6400:0009:0000::/48				
	2406:6400:000A:0000::/48				
	2406:6400:000B:0000::/48				
	2406:6400:000C:0000::/48				
	2406:6400:000D:0000::/48				
23	2406:6400:000E:0000::/48	WAN Prefix Infra Link		No	Recommeded
	2406:6400:000F:0000::/48				

Table	6: Further detail CS	link WAN			
Block#	Prefix	Description	Reverse Domain	SOR	Registration
27	2406:6400:0010:0000::/48	WAN Prefix CS Link R1 Region1		No	Recommeded
	2406:6400:0011:0000::/48				
	2406:6400:0012:0000::/48				
	2406:6400:0013:0000::/48				
28	2406:6400:0014:0000::/48	WAN Prefix CS Link R3 Region1		No	Recommeded
	2406:6400:0015:0000::/48				
	2406:6400:0016:0000::/48				
	2406:6400:0017:0000::/48				
32	2406:6400:0018:0000::/48	WAN Prefix CS Link R4 Region2		No	Recommeded
	2406:6400:0019:0000::/48				
	2406:6400:001A:0000::/48				
	2406:6400:001B:0000::/48				
33	2406:6400:001C:0000::/48	WAN Prefix CS Link R6 Region2		No	Recommeded
	2406:6400:001D:0000::/48				
	2406:6400:001E:0000::/48				
	2406:6400:001F:0000::/48				
37	2406:6400:0020:0000::/48	WAN Prefix CS Link R7 Region3		No	Recommeded
	2406:6400:0021:0000::/48				
	2406:6400:0022:0000::/48				
	2406:6400:0023:0000::/48				
38	2406:6400:0024:0000::/48	WAN Prefix CS Link R9 Region3		No	Recommeded
	2406:6400:0025:0000::/48				
	2406:6400:0026:0000::/48				
	2406:6400:0027:0000::/48				
42	2406:6400:0028:0000::/48	WAN Prefix CS Link R10 Region4		No	Recommeded
	2406:6400:0029:0000::/48				
	2406:6400:002A:0000::/48				
	2406:6400:002B:0000::/48				
43	2406:6400:002C:0000::/48	WAN Prefix CS Link R12 Region4		No	Recommeded
	2406:6400:002D:0000::/48				
	2406:6400:002E:0000::/48				
	2406:6400:002F:0000::/48				

Table	7: CS link WAN sum	marization options	
Block#	Prefix	Description	Reverse Domain
24	2406:6400:0010:0000::/45	WAN CS Link Region1 Summary [R2]	
25	2406:6400:0010:0000::/46	WAN CS Link Region1 POP1 Summary [R1]	
26	2406:6400:0014:0000::/46	WAN CS Link Region1 POP2 Summary [R3]	
Block#	Prefix	Description	Reverse Domain
29	2406:6400:0018:0000::/45	WAN Prefix CS Link Region2 Summary [R5]	
30	2406:6400:0018:0000::/46	WAN CS Link Region2 POP1 Summary [R4]	
31	2406:6400:001C:0000::/46	WAN CS Link Region2 POP2 Summary [R6]	
Block#	Prefix	Description	Reverse Domain
34	2406:6400:0020:0000::/45	WAN Prefix CS Link Region3 Summary [R8]	
35	2406:6400:0020:0000::/46	WAN CS Link Region3 POP1 Summary [R7]	
36	2406:6400:0024:0000::/46	WAN CS Link Region3 POP2 Summary [R9]	
Block#	Prefix	Description	Reverse Domain
39	2406:6400:0028:0000::/45	WAN Prefix CS Link Region4 Summary [R11]	
40	2406:6400:0028:0000::/46	WAN CS Link Region4 POP1 Summary [R10]	
41	2406:6400:002C:0000::/46	WAN CS Link Region4 POP2 Summary [R12]	

APN

Table 8: Further detail loopback					
Block#	Prefix	Description	PTR Record	SOR	Registration
20	2406:6400:0000:0000::/48	Loopback		No	Recommeded
			YES		
43	2406:6400:0000:0000::1/128	Router1 loopback 0	YES	No	No
44	2406:6400:0000:0000::2/128	Router2 loopback 0	YES	No	No
45	2406:6400:0000:0000::3/128	Router3 loopback 0	YES	No	No
46	2406:6400:0000:0000::4/128	Router4 loopback 0	YES	No	No
47	2406:6400:0000:0000::5/128	Router5 loopback 0	YES	No	No
48	2406:6400:0000:0000::6/128	Router6 loopback 0	YES	No	No
49	2406:6400:0000:0000::7/128	Router7 loopback 0	YES	No	No
50	2406:6400:0000:0000::8/128	Router8 loopback 0	YES	No	No
51	2406:6400:0000:0000::9/128	Router9 loopback 0	YES	No	No
52	2406:6400:0000:0000::10/128	Router10 loopback 0	YES	No	No
53	2406:6400:0000:0000::11/128	Router11 loopback 0	YES	No	No
54	2406:6400:0000:0000::12/128	Router12 loopback 0	YES	No	No

Table	9: Further detail transp	ort			
Block#	Prefix	Description	PTR Record	SOR	Registration
21	2406:6400:0002:0000::/48	Purple Transport		No	Recommeded
	2406:6400:0002:0000::1/48	Router2 fa0/0	YES	No	No
	2406:6400:0002:0000::2/48	Router5 fa0/0	YES	No	No
	2406:6400:0002:0000::3/48	Router8 fa0/0	YES	No	No
	2406:6400:0002:0000::4/48	Router11 fa0/0	YES	No	No
Block#	Prefix	Description	PTR Record	SOR	Registration
22	2406:6400:0003:0000::/48	Green Transport		No	Recommended
	2406:6400:0003:0000::1/48	Router2 fa0/1	YES	No	No
	2406:6400:0003:0000::2/48	Router5 fa0/1	YES	No	No
	2406:6400:0003:0000::3/48	Router8 fa0/1	YES	No	No
	2406:6400:0003:0000::4/48	Router11 fa0/1	YES	No	No

Block#	Prefix	Description	PTR Record	SOR	Registration
23	2406:6400:000E:0000::/48	WAN Prefix Infra Link		No	Recommeded
55	2406:6400:000E:0000::/64	R2[::1]-R1[::2]	YES	No	No
56	2406:6400:000E:0001::/64	R2[::1]-R3[::2]	YES	No	No
57	2406:6400:000E:0002::/64	R1[::1]-R3[::2]	YES	No	No
	2406:6400:000E:0003::/64			1000 C	
	2406:6400:000E:0004::/64				
	2406:6400:000E:0005::/64				
	2406:6400:000E:0006::/64				
	2406:6400:000E:0007::/64				
	2406:6400:000E:0008::/64				
	2406:6400:000E:0009::/64				
	2406.6400.000E.000A/64				
	2406:6400:000E:0006:764				
	2406:6400:000E:000D::/64				
	2406:6400:000E:000E:/64				
	2406:6400:000E:000E:/64				
58	2406:6400:000E:0010::/64	R5[::1]-R4[::2]	YES	No	No
59	2406:6400:000E:0011::/64	R5[::1]-R6[::2]	YES	No	No
60	2406:6400:000E:0012::/64	R4[::1]-R6[::2]	YES	No	No
	2406:6400:000E:0013::/64				
	2406:6400:000E:0014::/64				
	2406:6400:000E:0015::/64				
	2406:6400:000E:0016::/64				
	2406:6400:000E:0017::/64				
	2406:6400:000E:0018::/64				
	2406:6400:000E:0019::/64				
	2406:6400:000E:001A::/64				
	2406:6400:000E:001B::/64				
	2406:6400:000E:001C::/64				
	2406:6400:000E:001D::/64				
	2406:6400:000E:001E::/64				
	2406:6400:000E:001F::/64			-	
61	2406:6400:000E:0020::/64	R8[::1]-R7[::2]	YES	No	No
62	2406:6400:000E:0021::/64	R8[::1]-R9[::2]	YES	No	No
63	2406:6400:000E:0022::/64	R7[::1]-R9[::2]	YES	No	No
	2406:6400:000E:0023::/64				
	2406:6400:000E:0024::/64				
	2406:6400:000E:0025::/64				
	2406:6400:000E:0026::/64			-	
	2406:6400:000E:0027::/64				
	2406:6400:000E:0028::/64				
	2406:6400:000E:0029::/64				
	2406:6400:000E:002B::/64				
	2406:6400:000E:002C::/64				
	2406:6400:000E:002D::/64			-	
	2406:6400:000E:002E::/64				
	2406:6400:000E:002F::/64			1	
64	2406:6400:000E:0030::/64	R11[::1]-R10[::2]	YES	No	No
65	2406:6400:000E:0031::/64	R11[::1]-R12[::2]	YES	No	No
66	2406:6400:000E:0032::/64	R10[::1]-R12[::2]	YES	No	No
(********	2406:6400:000E:0033::/64				
	2406:6400:000E:0034::/64				
	2406:6400:000E:0035::/64				
	2406:6400:000E:0036::/64				
	2406:6400:000E:0037::/64				
	2406:6400:000E:0038::/64				
	2406:6400:000E:0039::/64				
	2406:6400:000E:003A::/64				

Table	11: Detail CS link W	AN Region 1			
Block#	Prefix	Description	PTR Record	SOR	Registration
27	2406:6400:0010:0000::/48	WAN Prefix CS Link R1 Region1		No	Recommeded
	2406:6400:0010:0000::/64	R1[::1]-CAR1[::2]	Yes	No	No
	2406:6400:0010:0001::/64		Yes	No	No
	2406:6400:0010:0002::/64		Yes	No	No
	2406:6400:0010:0003::/64		Yes	No	No
	2406:6400:0010:0004::/64		Yes	No	No
	2406:6400:0010:0005::/64		Yes	No	No
	2406:6400:0010:0006::/64		Yes	No	No
	2406:6400:0010:0007::/64		Yes	No	No
	2406:6400:0010:0008::/64		Yes	No	No
	2406:6400:0010:0009::/64		Yes	No	No
	2406:6400:0010:000A::/64		Yes	No	No
	2406:6400:0010:000B::/64		Yes	No	No
	2406:6400:0010:000C::/64		Yes	No	No
	2406:6400:0010:000D::/64		Yes	No	No
	2406:6400:0010:000E::/64		Yes	No	No
	2406:6400:0010:000F::/64		Yes	No	No
Block#	Prefix	Description	PTR Record	SOR	Registration
28	2406:6400:0014:0000::/48	WAN Prefix CS Link R3 Region1		No	Recommeded
	2406:6400:0014:0000::/64	R3[::1]-CBR1[::2]	Yes	No	No
	2406:6400:0014:0001::/64		Yes	No	No
	2406:6400:0014:0002::/64		Yes	No	No
	2406:6400:0014:0003::/64		Yes	No	No
	2406:6400:0014:0004::/64		Yes	No	No
	2406:6400:0014:0005::/64		Yes	No	No
	2406:6400:0014:0006::/64		Yes	No	No
	2406:6400:0014:0007::/64		Yes	No	No
	2406:6400:0014:0008::/64		Yes	No	No
	2406:6400:0014:0009::/64		Yes	No	No
	2406:6400:0014:000A::/64		Yes	No	No
	2406:6400:0014:000B::/64		Yes	No	No
	2406:6400:0014:000C::/64		Yes	No	No
	2406:6400:0014:000D::/64		Yes	No	No
	2406:6400:0014:000E::/64		Yes	No	No
	2406:6400:0014:000F::/64		Yes	No	No

Table	12: Detail CS link W	AN Region 2			
Block#	Prefix	Description	PTR Record	SOR	Registration
32	2406:6400:0018:0000::/48	WAN Prefix CS Link R4 Region2		No	Recommeded
	2406:6400:0018:0000::/64	R4[::1]-CAR2[::2]	Yes	No	No
	2406:6400:0018:0001::/64		Yes	No	No
	2406:6400:0018:0002::/64		Yes	No	No
	2406:6400:0018:0003::/64		Yes	No	No
	2406:6400:0018:0004::/64		Yes	No	No
	2406:6400:0018:0005::/64		Yes	No	No
	2406:6400:0018:0006::/64		Yes	No	No
	2406:6400:0018:0007::/64		Yes	No	No
	2406:6400:0018:0008::/64		Yes	No	No
	2406:6400:0018:0009::/64		Yes	No	No
	2406:6400:0018:000A::/64		Yes	No	No
	2406:6400:0018:000B::/64		Yes	No	No
	2406:6400:0018:000C::/64		Yes	No	No
	2406:6400:0018:000D::/64		Yes	No	No
	2406:6400:0018:000E::/64		Yes	No	No
	2406:6400:0018:000F::/64		Yes	No	No
Block#	Prefix	Description	PTR Record	SOR	Registration
33	2406:6400:001C:0000::/48	WAN Prefix CS Link R6 Region2		No	Recommeded
	2406:6400:001C:0000::/64	R6[::1]-CBR2[::2]	Yes	No	No
	2406:6400:001C:0001::/64		Yes	No	No
	2406:6400:001C:0002::/64		Yes	No	No
	2406:6400:001C:0003::/64		Yes	No	No
	2406:6400:001C:0004::/64		Yes	No	No
	2406:6400:001C:0005::/64		Yes	No	No
	2406:6400:001C:0006::/64		Yes	No	No
	2406:6400:001C:0007::/64		Yes	No	No
	2406:6400:001C:0008::/64		Yes	No	No
	2406:6400:001C:0009::/64		Yes	No	No
	2406:6400:001C:000A::/64		Yes	No	No
	2406:6400:001C:000B::/64		Yes	No	No
	2406:6400:001C:000C::/64		Yes	No	No
	2406:6400:001C:000D::/64		Yes	No	No
	2406:6400:001C:000E::/64		Yes	No	No
	2406:6400:001C:000F::/64		Yes	No	No

Table	13: Detail CS link W	/AN Region3			
Block#	Prefix	Description	PTR Record	SOR	Registration
37	2406:6400:0020:0000::/48	WAN Prefix CS Link R7 Region3		No	Recommeded
	2406:6400:0020:0000::/64	R7[::1]-CAR3[::2]	Yes	No	No
	2406:6400:0020:0001::/64		Yes	No	No
	2406:6400:0020:0002::/64		Yes	No	No
	2406:6400:0020:0003::/64		Yes	No	No
	2406:6400:0020:0004::/64		Yes	No	No
	2406:6400:0020:0005::/64		Yes	No	No
	2406:6400:0020:0006::/64		Yes	No	No
	2406:6400:0020:0007::/64		Yes	No	No
	2406:6400:0020:0008::/64		Yes	No	No
	2406:6400:0020:0009::/64		Yes	No	No
	2406:6400:0020:000A::/64		Yes	No	No
	2406:6400:0020:000B::/64		Yes	No	No
	2406:6400:0020:000C::/64		Yes	No	No
	2406:6400:0020:000D::/64		Yes	No	No
	2406:6400:0020:000E::/64		Yes	No	No
	2406:6400:0020:000F::/64		Yes	No	No
Block#	Prefix	Description	PTR Record	SOR	Registration
38	2406:6400:0024:0000::/48	WAN Prefix CS Link R9 Region3		No	Recommeded
	2406:6400:0024:0000::/64	R9[::1]-CBR3[::2]	Yes	No	No
	2406:6400:0024:0001::/64		Yes	No	No
	2406:6400:0024:0002::/64		Yes	No	No
	2406:6400:0024:0003::/64		Yes	No	No
	2406:6400:0024:0004::/64		Yes	No	No
	2406:6400:0024:0005::/64		Yes	No	No
	2406:6400:0024:0006::/64		Yes	No	No
	2406:6400:0024:0007::/64		Yes	No	No
	2406:6400:0024:0008::/64		Yes	No	No
	2406:6400:0024:0009::/64		Yes	No	No
	2406:6400:0024:000A::/64		Yes	No	No
	2406:6400:0024:000B::/64		Yes	No	No
	2406:6400:0024:000C::/64		Yes	No	No
	2406:6400:0024:000D::/64		Yes	No	No
	2406:6400:0024:000E::/64		Yes	NO No	NO No
	2400:0400:0024:000F::/64	1	res		

Block#	Prefix	Description	PTR Record	SOR	Registration
42	2406:6400:0028:0000::/48	WAN Prefix CS Link R10 Region4		No	Recommeded
	2406:6400:0028:0000::/64	R10[::1]-CAR4[::2]	Yes	No	No
	2406:6400:0028:0001::/64		Yes	No	No
	2406:6400:0028:0002::/64		Yes	No	No
	2406:6400:0028:0003::/64		Yes	No	No
	2406:6400:0028:0004::/64		Yes	No	No
	2406:6400:0028:0005::/64		Yes	No	No
	2406:6400:0028:0006::/64		Yes	No	No
	2406:6400:0028:0007::/64		Yes	No	No
	2406:6400:0028:0008::/64		Yes	No	No
	2406:6400:0028:0009::/64		Yes	No	No
	2406:6400:0028:000A::/64		Yes	No	No
	2406:6400:0028:000B::/64		Yes	No	No
	2406:6400:0028:000C::/64		Yes	No	No
	2406:6400:0028:000D::/64		Yes	No	No
	2406:6400:0028:000E::/64		Yes	No	No
	2406:6400:0028:000F::/64		Yes	No	No
Block#	Prefix	Description	PTR Record	SOR	Registration
43	2406:6400:002C:0000::/48	WAN Prefix CS Link R12 Region4		No	Recommeded
	2406:6400:002C:0000::/64	R12[::1]-CBR4[::2]	Yes	No	No
	2406:6400:002C:0001::/64		Yes	No	No
	0.405 5.400 0000 0000 /5.4				
	2406:6400:002C:0002::/64		Yes	No	No
	2406:6400:002C:0002::/64 2406:6400:002C:0003::/64		Yes Yes	No	No
	2406:6400:002C:0002::/64 2406:6400:002C:0003::/64 2406:6400:002C:0004::/64		Yes Yes Yes	No No No	No No No
	2406:6400:002C:0002::/64 2406:6400:002C:0003::/64 2406:6400:002C:0004::/64 2406:6400:002C:0005::/64		Yes Yes Yes Yes	No No No	No No No
	2406:6400:002C:0002::/64 2406:6400:002C:0003::/64 2406:6400:002C:0004::/64 2406:6400:002C:0005::/64 2406:6400:002C:0006::/64		Yes Yes Yes Yes Yes	No No No No	No No No No
	2406:6400:002C:0002::/64 2406:6400:002C:0003::/64 2406:6400:002C:0004::/64 2406:6400:002C:0005::/64 2406:6400:002C:0006::/64 2406:6400:002C:0007::/64		Yes Yes Yes Yes Yes Yes	No No No No No	No No No No No
	2406:6400:002C:0002::/64 2406:6400:002C:0003::/64 2406:6400:002C:0004::/64 2406:6400:002C:0005::/64 2406:6400:002C:0006::/64 2406:6400:002C:0008::/64		Yes Yes Yes Yes Yes Yes Yes	No No No No No No	No No No No No No
	2406:6400:002C:0002::/64 2406:6400:002C:0003::/64 2406:6400:002C:0004::/64 2406:6400:002C:0005::/64 2406:6400:002C:0006::/64 2406:6400:002C:0008::/64 2406:6400:002C:0009::/64		Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No	No No No No No No
	2406:6400:002C:0002::/64 2406:6400:002C:0003::/64 2406:6400:002C:0004::/64 2406:6400:002C:0005::/64 2406:6400:002C:0006::/64 2406:6400:002C:0008::/64 2406:6400:002C:0009::/64 2406:6400:002C:000A::/64		Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No	No No No No No No No
	2406:6400:002C:0002::/64 2406:6400:002C:0003::/64 2406:6400:002C:0004::/64 2406:6400:002C:0005::/64 2406:6400:002C:0006::/64 2406:6400:002C:0008::/64 2406:6400:002C:0009::/64 2406:6400:002C:0008::/64		Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No	No No No No No No No No
	2406:6400:002C:0002::/64 2406:6400:002C:0003::/64 2406:6400:002C:0004::/64 2406:6400:002C:0005::/64 2406:6400:002C:0006::/64 2406:6400:002C:0008::/64 2406:6400:002C:0009::/64 2406:6400:002C:0008::/64 2406:6400:002C:0008::/64		Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No No	No
	2406:6400:002C:0002::/64 2406:6400:002C:0003::/64 2406:6400:002C:0004::/64 2406:6400:002C:0005::/64 2406:6400:002C:0006::/64 2406:6400:002C:0008::/64 2406:6400:002C:0009::/64 2406:6400:002C:0008::/64 2406:6400:002C:000B::/64 2406:6400:002C:000D::/64		Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No No No	No No

Table 14: Detail CS link WAN Region 4

Table 1	5: Customer block Region	L			
Block#	Prefix	Description	Reverse DNS	SOR	Registration
7	2406:6400:8000:0000::/35	Customer block Region 1			
	2406:6400:8000:0000::/40	Customer block POP1 [R1]		>= /48 Yes	Yes
	2406:6400:8100:0000::/40				
	2406:6400:8200:0000::/40				
	2406:6400:8300:0000::/40				
	2406:6400:8400:0000::/40				
	2406:6400:8500:0000::/40				
	2406:6400:8600:0000::/40				
	2406:6400:8700:0000::/40				
	2406:6400:8800:0000::/40	Customer block future use/POP		>= /48 Yes	Yes
	2406:6400:8900:0000::/40				
	2406:6400:8A00:0000::/40				
	2406:6400:8B00:0000::/40				
	2406:6400:8C00:0000::/40				
	2406:6400:8D00:0000::/40				
	2406:6400:8E00:0000::/40				
	2406:6400:8F00:0000::/40				
	2406:6400:9000:0000::/40	Customer block future use/POP		>= /48 Yes	Yes
	2406:6400:9100:0000::/40				
	2406:6400:9200:0000::/40				
	2406:6400:9300:0000::/40				
	2406:6400:9400:0000::/40				
	2406:6400:9500:0000::/40				
	2406:6400:9600:0000::/40				
	2406:6400:9700:0000::/40				
	2406:6400:9800:0000::/40	Customer block POP2 [R3]		>= /48 Yes	Yes
	2406:6400:9900:0000::/40				
	2406:6400:9A00:0000::/40				
	2406:6400:9B00:0000::/40				
	2406:6400:9C00:0000::/40				
	2406:6400:9D00:0000::/40				
	2406:6400:9E00:0000::/40				
	2406:6400:9F00:0000::/40				

APNIC

(::)

Table 1	6: Summarization oprions o		
Block#	Prefix	Description	Reverse Domain
	2406:6400:8000:0000::/35	Customer block Region 1 [R2]	
	2406:6400:8000:0000::/37	Customer block POP1 [R1]	
	2406:6400:8800:0000::/37	Customer block future use/POP	
	2406:6400:9000:0000::/37	Customer block future use/POP	
	2406:6400:9800:0000::/37	Customer block POP2 [R3]	

Table 17: Detail customer block Region 1					
Block#	Prefix	Description	Reverse DNS	SOR	Registration
	2406:6400:8000:0000::/40	1st Customer block POP1 [R1]			
	2406:6400:8000:0000::/48	1st Customer prefix POP1 [R1]		Yes	Yes
	2406:6400:8001:0000::/48				
	2406:6400:8002:0000::/48				
	2406:6400:8003:0000::/48				
	2406:6400:8004:0000::/48				
	2406:6400:8005:0000::/48				
	2406:6400:8006:0000::/48				
	2406:6400:8007:0000::/48				
	2406:6400:9800:0000::/40	1st Customer block POP2 [R3]			
	2406:6400:9800:0000::/48	1st Customer prefix POP2 [R3]		Yes	Yes
	2406:6400:9801:0000::/48				
	2406:6400:9802:0000::/48				
	2406:6400:9803:0000::/48				
	2406:6400:9804:0000::/48				
	2406:6400:9805:0000::/48				
	2406:6400:9806:0000::/48				
	2406:6400:9807:0000::/48				

APN

Table 1	8: Customer block Region 2				
Block#	Prefix	Description	Reverse DNS	SOR	Registration
8	2406:6400:a000:0000::/35	Customer block Region 2			Registration
	2406:6400:A000:0000::/40	Customer block POP1 [R4]		>= /48 Yes	Yes
	2406:6400:A100:0000::/40				
	2406:6400:A200:0000::/40				
	2406:6400:A300:0000::/40				
	2406:6400:A400:0000::/40				
	2406:6400:A500:0000::/40				
	2406:6400:A600:0000::/40				
	2406:6400:A700:0000::/40				
	2406:6400:A800:0000::/40	Customer block future use/POP		>= /48 Yes	Yes
	2406:6400:A900:0000::/40				
	2406:6400:AA00:0000::/40				
	2406:6400:AB00:0000::/40				
	2406:6400:AC00:0000::/40				
	2406:6400:AD00:0000::/40				
	2406:6400:AE00:0000::/40				
	2406:6400:AF00:0000::/40				
	2406:6400:B000:0000::/40	Customer block future use/POP		>= /48 Yes	Yes
	2406:6400:B100:0000::/40				
	2406:6400:B200:0000::/40				
	2406:6400:B300:0000::/40				
	2406:6400:B400:0000::/40				
	2406:6400:B500:0000::/40				
	2406:6400:B600:0000::/40				
	2406:6400:B700:0000::/40				
	2406:6400:B800:0000::/40	Customer block POP2 [R6]		>= /48 Yes	Yes
	2406:6400:B900:0000::/40				
	2406:6400:BA00:0000::/40				
	2406:6400:BB00:0000::/40				
	2406:6400:BC00:0000::/40				
	2406:6400:BD00:0000::/40				
	2406:6400:BE00:0000::/40				
	2406:6400:BF00:0000::/40				

Table 1	9: Summarization oprions c		
Block#	Prefix	Description	Reverse Domain
	2406:6400:A000:0000::/35	Customer block Region 2 [R5]	
	2406:6400:A000:0000::/37	Customer block POP1 [R4]	
	2406:6400:A800:0000::/37	Customer block future use/POP	
	2406:6400:B000:0000::/37	Customer block future use/POP	
	2406:6400:B800:0000::/37	Customer block POP2 [R6]	

Table 20: Detail customer block Region 2					
Block#	Prefix	Description	Reverse DNS	SOR	Registration
	2406:6400:A000:0000::/40	1st Customer block POP1 [R4]			
	2406:6400:A000:0000::/48	1st Customer prefix POP1 [R4]		Yes	Yes
	2406:6400:A001:0000::/48				
	2406:6400:A002:0000::/48				
	2406:6400:A003:0000::/48				
	2406:6400:A004:0000::/48				
	2406:6400:A005:0000::/48				
	2406:6400:A006:0000::/48				
	2406:6400:A007:0000::/48				
	2406:6400:B800:0000::/40	1st Customer block POP2 [R6]			
	2406:6400:B800:0000::/48	1st Customer prefix POP2 [R6]		Yes	Yes
	2406:6400:B801:0000::/48				
	2406:6400:B802:0000::/48				
	2406:6400:B803:0000::/48				
	2406:6400:B804:0000::/48				
	2406:6400:B805:0000::/48				
	2406:6400:B806:0000::/48				
	2406:6400:B807:0000::/48				

Table 2	1: Customer block Region 3	8			
Block#	Prefix	Description	Reverse DNS	SOR	Registration
9	2406:6400:c000:0000::/35	Customer block Region 3			
				(40)	
	2406:6400:C000:0000::/40	Customer block POP1 [R7]		>= /48 Yes	Yes
	2406:6400:C100:0000::/40				
	2406:6400:C200:0000::/40				
	2406:6400:C300:0000::/40				
	2406:6400:C400:0000::/40				
	2406:6400:C500:0000::/40				
	2406:6400:C600:0000::/40				
	2406:6400:C700:0000::/40				
	2406:6400:C800:0000::/40	Customer block future use/POP		>= /48 Yes	Yes
	2406:6400:C900:0000::/40				
	2406:6400:CA00:0000::/40				
	2406:6400:CB00:0000::/40				
	2406:6400:CC00:0000::/40				
	2406:6400:CD00:0000::/40				
	2406:6400:CE00:0000::/40				
	2406:6400:CF00:0000::/40				
	2406:6400:D000:0000::/40	Customer block future use/POP		>= /48 Yes	Yes
	2406:6400:D100:0000::/40				
	2406:6400:D200:0000::/40				
	2406:6400:D300:0000::/40				
	2406:6400:D400:0000::/40				
	2406:6400:D500:0000::/40				
	2406:6400:D600:0000::/40				
	2406:6400:D700:0000::/40				
	2406:6400:D800:0000::/40	Customer block POP2 [R9]		>= /48 Yes	Yes
	2406:6400:D900:0000::/40			,	
	2406:6400:DA00:0000::/40				
	2406:6400:DB00:0000::/40				
	2406:6400:DC00:0000::/40	<u> </u>			
	2406:6400:DD00:0000::/40	1			
	2406:6400:DE00:0000/40	+			
	2406:6400:DF00:0000::/40				

APNIC

Table 2	2: Summarization oprions c		
Block#	Prefix	Description	Reverse Domain
	2406:6400:c000:0000::/35	Customer block Region 3 [R8]	
	2406:6400:C000:0000::/37	Customer block POP1 [R7]	
	2406:6400:C800:0000::/37	Customer block future use/POP	
	2406:6400:D000:0000::/37	Customer block future use/POP	
	2406:6400:D800:0000::/37	Customer block POP2 [R9]	

Table 23: Detail customer block Region 3					
Block#	Prefix	Description	Reverse DNS	SOR	Registration
	2406:6400:C000:0000::/40	1st Customer block POP1 [R7]			
	2406:6400:C000:0000::/48	1st Customer prefix POP1 [B7]		Yes	Yes
	2406:6400:C001:0000::/48				
	2406:6400:C002:0000::/48				
	2406:6400:C003:0000::/48				
	2406:6400:C004:0000::/48				
	2406:6400:C005:0000::/48				
	2406:6400:C006:0000::/48				
	2406:6400:C007:0000::/48				
	2406:6400:D800:0000::/40	1st Customer block POP2 [R9]			
	2406:6400:D800:0000::/48	1st Customer prefix POP2 [R9]		Yes	Yes
	2406:6400:D801:0000::/48				
	2406:6400:D802:0000::/48				
	2406:6400:D803:0000::/48				
	2406:6400:D804:0000::/48				
	2406:6400:D805:0000::/48				
	2406:6400:D806:0000::/48				
	2406:6400:D807:0000::/48				

APNIC

Table 2	4: Customer block Region 4				
Block#	Prefix	Description	Reverse DNS	SOR	Registration
10	2406:6400:e000:0000::/35	Customer block Region 4			Jennen
	2406:6400:E000:0000::/40	Customer block POP1 [R10]		>= /48 Yes	Yes
	2406:6400:E100:0000::/40				
	2406:6400:E200:0000::/40				
	2406:6400:E300:0000::/40				
	2406:6400:E400:0000::/40				
	2406:6400:E500:0000::/40				
	2406:6400:E600:0000::/40				
	2406:6400:E700:0000::/40				
	2406:6400:E800:0000::/40	Customer block future use/POP		>= /48 Yes	Yes
	2406:6400:E900:0000::/40				
	2406:6400:EA00:0000::/40				
	2406:6400:EB00:0000::/40				
	2406:6400:EC00:0000::/40				
	2406:6400:ED00:0000::/40				
	2406:6400:EE00:0000::/40				
	2406:6400:EF00:0000::/40				
	2406:6400:F000:0000::/40	Customer block future use/POP		>= /48 Yes	Yes
	2406:6400:F100:0000::/40				
	2406:6400:F200:0000::/40				
	2406:6400:F300:0000::/40				
	2406:6400:F400:0000::/40				
	2406:6400:F500:0000::/40				
	2406:6400:F600:0000::/40				
	2406:6400:F700:0000::/40				
	2406:6400:F800:0000::/40	Customer block POP2 [R12]		>= /48 Yes	Yes
	2406:6400:F900:0000::/40				
	2406:6400:FA00:0000::/40				
	2406:6400:FB00:0000::/40				
	2406:6400:FC00:0000::/40				
	2406:6400:FD00:0000::/40				
	2406:6400:FE00:0000::/40				
	2406:6400:FF00:0000::/40				

Table 2	5: Summarization oprions cu		
Block#	Prefix	Description	Reverse Domain
	2406:6400:e000:0000::/35	Customer block Region 4 [R11]	
	2406:6400:E000:0000::/37	Customer block POP1 [R10]	
	2406:6400:E800:0000::/37	Customer block future use/POP	
	2406:6400:F000:0000::/37	Customer block future use/POP	
	2406:6400:F800:0000::/37	Customer block POP2 [R12]	

Table 26: Detail customer block Region 4					
Block#	# Prefix Description		Reverse DNS	SOR	Registration
	2406:6400:E000:0000::/40	1st Customer block POP1 [R10]			
	2406:6400:E000:0000::/48	1st Customer prefix POP1 [R10]		Yes	Yes
	2406:6400:E001:0000::/48				
	2406:6400:E002:0000::/48				
	2406:6400:E003:0000::/48				
	2406:6400:E004:0000::/48				
	2406:6400:E005:0000::/48				
	2406:6400:E006:0000::/48				
	2406:6400:E007:0000::/48				
	2406:6400:F800:0000::/40	1st Customer block POP2 [R10]			
	2406:6400:F800:0000::/48	1st Customer prefix POP2 [R10]		Yes	Yes
	2406:6400:F801:0000::/48				
	2406:6400:F802:0000::/48				
	2406:6400:F803:0000::/48				
	2406:6400:F804:0000::/48				
	2406:6400:F805:0000::/48				
	2406:6400:F806:0000::/48				
	2406:6400:F807:0000::/48				

APN

Summary parent block IPV4

Block#	Prefix	Size	Description
1	172.16.0.0	/19	Parent block
2	172.16.0.0	/20	Infrastructure
3	172.16.16.0	/20	Customer network

Detail DC infrastructure block IPV4

Block#	Prefix	Size	Description	SOR	Register
2	172.16.0.0	/20	Infrastructure		
4	172.16.0.0	/23	Router2 DC summary net		
5	172.16.0.0	/24	Router2 DC	No	Recommended
6	172.16.2.0	/23	Router5 DC summary net		
7	172.16.2.0	/24	Router5 DC	No	Recommended
8	172.16.4.0	/23	Router8 DC summary net		
9	172.16.4.0	/24	Router8 DC	No	Recommended
10	172.16.6.0	/23	Router11 DC summary net		
11	172.16.6.0	/24	Router11 DC	No	Recommended

Detail infrastructure WAN block IPV4

12	172.16.10.0	/24	WAN prefix		Optional
13	172.16.10.0	/30	Router2-1 WAN	No	
14	172.16.10.4	/30	Router2-3 WAN	No	
15	172.16.10.8	/30	Router1-3 WAN	No	
16	172.16.10.24	/30	Router5-4 WAN	No	
17	172.16.10.28	/30	Router5-6 WAN	No	
18	172.16.10.32	/30	Router4-6 WAN	No	
19	172.16.10.48	/30	Router8-7 WAN	No	
20	172.16.10.52	/30	Router8-9 WAN	No	
21	172.16.10.56	/30	Router7-9 WAN	No	
22	172.16.10.72	/30	Router11-10 WAN	No	
23	172.16.10.76	/30	Router11-12 WAN	No	
24	172.16.10.80	/30	Router10-12 WAN	No	

Detail customer link WAN block

Block#	Prefix	Size	Description	SOR	Register
	172.16.11.0	/26	WAN CS Link Region1		
	172.16.11.0	/27	WAN CS Link POP1 [R1]		
	172.16.11.0	/30	R1[::1]-CAR1[::2]	No	No
	172.16.11.4	/30			
	172.16.11.32	/27	WAN CS Link POP2 [R3]		
	172.16.11.32	/30	R3[::33]-CBR1[::34]	No	No
	172.16.11.36	/30			
	172.16.11.64	/26	WAN CS Link Region2		
	172.16.11.64	/27	WAN CS Link POP1 [R4]		
	172.16.11.64	/30	R4[::65]-CAR2[::66]	No	No
	172.16.11.68	/30			
	172.16.11.96	/27	WAN CS Link POP2 [R6]		
	172.16.11.96	/30	R6[::97]-CBR2[::98]	No	No
	172.16.11.100	/30			
	172.16.11.128	/26	WAN CS Link Region3		
	172.16.11.128	/27	WAN CS Link POP1 [R7]		
	172.16.11.128	/30	R7[::129]-CAR3[::130]	No	No
	172.16.11.132	/30			
	172.16.11.160	/27	WAN CS Link POP2 [R9]		
	172.16.11.160	/30	R9[::161]-CBR3[::162]	No	No
	172.16.11.164	/30			
	172.16.11.192	/26	WAN CS Link Region4		
	172.16.11.192	/27	WAN CS Link POP1 [R10]		
	172.16.11.192	/30	R10[::193]-CAR4[::194]	No	No
	172.16.11.196	/30			
	172.16.11.224	/27	WAN CS Link POP2 [R12]		
	172.16.11.224	/30	R12[::225]-CBR4[::226]	No	No
	172.16.11.228	/30			

Detail infrastructure block Transport & Loopback IPV4

25	172.16.12.0	/24	Transport link PURPLE	No	
26	172.16.13.0	/24	Transport link GREEN	No	
27	172.16.15.0	/24	Loopback	No	

Detail customer block

Block#	Prefix	Size	Description	SOR	Register
28	172.16.6.0	/20	Customer network		
29	172.16.16.0	/22	Router2 summary net		
30	172.16.16.0	/23	Router1 CS network	Yes	Must
31	172.16.18.0	/23	Router3 CS network	Yes	Must
32	172.16.20.0	/22	Router5 summary net		
33	172.16.20.0	/23	Router4 CS network	Yes	Must
34	172.16.22.0	/23	Router6 CS network	Yes	Must
35	172.16.24.0	/22	Router8 summary net		
36	172.16.24.0	/23	Router7 CS network	Yes	Must
37	172.16.26.0	/23	Router9 CS network	Yes	Must
38	172.16.28.0	/22	Router11 summary net		
39	172.16.28.0	/23	Router10 CS network	Yes	Must
40	172.16.30.0	/23	Router12 CS network	Yes	Must

Training ISP IPv4 Address Plan

Questions?

APNIC

Overview

Routing Workshop (3 Days)

- Introduction to IP Routing
- IPv6 Address Structure
- Routing Lab Topology Overview

- Operation of OSPF Routing Protocol

- Lab Exercise on Basic Router and OSPF Dynamic Routing Configuration
- Basic BGP Operation
- BGP Attributes and Path Selection Process
- BGP Scaling Techniques
- Lab Exercise on iBGP, eBGP, RR, Peer group etc
- Internet Exchange [IX] Policy Overview and Configuration requirement

OSPF

- Open Shortest Path First
- Link state or SPF technology
- Developed by OSPF working group of IETF (RFC 1247)
- OSPFv2 (IPv4) standard described in RFC2328
- OSPFv3 (IPv6) standard described in RFC2740

- Designed for:
 - TCP/IP environment
 - Fast convergence
 - Variable-length subnet masks
 - Discontiguous subnets
 - Incremental updates
 - Route authentication
- Runs on IP, Protocol 89

Link State Routing Protocol

X's Link State

APNIC

What is Link State Routing

- Do not send full routing table on periodic interval
- Maintain three tables to collect routing information
 - Neighbor table
 - Topology Table
 - Routing table
- Use Shortest Path First (SPF) algorithm to select best path from topology table
- Send very small periodic (Hello) message to maintain link condition
- Send triggered update instantly when network change occur

Link State Data Structure

- Neighbor Table
 - List of all recognized neighboring router to whom routing information will be interchanged
- Topology Table
 - Also called LSDB which maintain list of routers and their link information i.e network destination, prefix length, link cost etc
- Routing table
 - Also called forwarding table contain only the best path to forward data traffic

Shortest Path First (SPF) Tree

Assume all links are Ethernet, with an OSPF cost of 10

- Every router in an OSPF network maintain an identical topology database
- Router place itself at the root of SPF tree when calculate the best path

Low Bandwidth Utilisation

- Only changes propagated
- Uses multicast on multi-access broadcast networks

Fast Convergence

- Detection Plus LSA/SPF
 - Known as the Dijkstra Algorithm

Fast Convergence

- Finding a new route
 - LSA flooded throughout area
 - Acknowledgement based
 - Topology database synchronised
 - Each router derives routing table to destination network

Basic OSPF Operation

- Neighbor discovery
 - Send L3 multicast message (hello) to discover neighbors
- Exchanging topology table (LSDB)
 - Send L3 multicast message (DBD packets)
- Use SPF algorithm to select best path
 - Each router independently calculates best path from an identical topology database of an OSPF network or area
- Building up routing table
 - All the SPF selected best paths are installed in routing table for the traffic to be forwarded

OSPF Neighbor Discovery Process

- Use IP packet to send hello message. At start routers are at OSPF Down State
- Use multicast address 224.0.0.5/FF02::5 to make sure single IP packet will be forwarded to every router within OSPF network. Router now at OSPF Init State

OSPF Neighbor Discovery Process

- All neighboring router with OSPF enabled receive the hello packet
- Checks contents of the hello message and if certain information match it reply (Unicast) to that hello with sending its router ID in the neighbor list.
- This is OSPF Two-way State

Contents Of A Hello Packet

- Required information to build up adjacency:
 - Router ID of sending router
 - Hello and dead interval time *
 - List of neighbors
 - Network mask
 - Router priority
 - Area ID *
 - DR & BDR IP
 - Authentication information (If any) *

* Need to match to create neighbor relationship

Discovering Network Information

- After creating 2-way neighbor relationship neighboring routers will start exchanging network related information
- At this stage they will decide who will send network information first. Router with the highest router ID will start sending first. This stage is called OSPF **Exstart Stage**
- Then they will start exchanging link state database. This stage is **Exchange Stage**

Adding Network Information

- When router receive the LSDB it perform following action:
 - Acknowledge the receipt of DBD by sending Ack packet (LSAck)
 - Compare the information it received with the existing DB (if any)
 - If the new DB is more up to date the router send link state request (LSR) for detail information of that link. This is Loading Stage
- When all LSR have been satisfied and all routers has an identical LSDB this stage is OSPF Full Stage

Maintaining Routing Information

- Send periodic updates (Hello) to all neighbors to make sure link with the neighbor is active. I.e 10 sec for LAN
- Send triggered (Instant) update if any network information changed
- Maintain link state sequence number to make sure all information are up-to-date
- Sequence number is 4-byte number that begins with 0x80000001 to 0x7fffffff

OSPF Packet Types

- OSPF use following five packet types to flow routing information between routers:
 - 1: hello [every 10 sec]
 - Hello Builds adjacencies between neighbors
 - 2: DBD [Database Descriptor Packet]
 - DBD for database synchronization between routers
 - 3: LSR [Link State Request Packet]
 - Requests specific link-state records from router to router
 - 4: LSU [Link State Update Packet]
 - Sends specifically requested link-state records
 - 5: LSAck [Link State Ack Packet]
 - Acknowledges the above packet types

Format of OSPF Packet

- All five OSPF packets encapsulated in IP payload (Not TCP)
- To ensure reliable deliver using IP packet OSPF use its own Ack packet (Type 5)

Format of OSPF Packet Header Field

- Version number
 - Either OSPF version 2 (IPv4) or version 3 (IPv6)
- Packet type
 - Differentiates the five OSPF packet types [Type 1 to Type 5]
- Packet length
 - Length of OSPF packet in bytes
- Router ID
 - Defines which router is the source of the packet [Not always source address of IP header]
- Area ID
 - Defines the area where the packet originated
- Checksum
 - Used for packet-header error-detection to ensure that the OSPF packet was not corrupted during transmission
- Authentication type
 - An option in OSPF that describes either clear-text passwords or encrypted Message Digest 5 (MD5) formats for router authentication

Content of OSPF Packet Data

- Data (for hello packet):
 - Contains a list of known neighbors
- Data (for DBD packet):
 - Contains a summary of the LSDB, which includes all known router IDs and their last sequence number, among a number of other fields
- Data (for LSR packet):
 - Contains the type of LSU needed and the router ID of the needed LSU
- Data (for LSU packet):
 - Contains the full LSA entry. Multiple LSA entries can fit in one OSPF update packet
- Data (for LSAck packet):
 - Is empty

Difference is OSPFv3 for IPv6

- OSPFv3 still use 32 bit number as router ID
- So OSPFv3 operation and packet types are same as OSPFv2
- Change will be in IP header where source address will be interface address and destination will be FF02::5 which is 128 bit address.
- Change will be in DBD [t2] and LSU packet [t4] to carry 128 bit prefix

OSPF Network Topology

- OSPF network can made up of different types of network links
- Neighbor relationship behavior will also be different for each network type
- It is important for OSPF to be configured correctly based on its network types to be functioned properly
- Some network type create neighbor relationship automatically some need to create it manually

OSPF Network Topology

Broadcast Multi-access Network

- Generally LAN type of technologies like Ethernet or Token Ring
- Neighbor relationship are created automatically
- DB/BDR election is required
- Default OSPF hello is 10 sec dead interval is 40 sec

Broadcast Multi-access Network

- Broadcast network use flooding process to send routing update
- Broadcast network use DR/BDR concept to reduce routing update traffic in the LAN
- Packet sent to DR/BDR use 224.0.0.6/FF02::6 multicast address
- Packets from DR to all other routers use 224.0.0.5/FF02::5 multicast address
- All neighbor routers form full adjacencies relation with the DR and BDR only

DB/BDR Election Process

- Router with the highest priority value is the DR, Second highest is BDR
- In the event of tie router with the highest IP address on an interface become DR and second highest is BDR
- DR/BDR election can be manipulated by using router-ID command.
- In practice loopback IP address is used as router ID and the highest IP address will become DR, Second highest is BDR
- The DR/BDR election is non-preemptive
- Generates network link advertisements
- Assists in database synchronization

Point-to-Point Network

- Usually a serial interface running either PPP or HDLC
- Neighbor relationship are created automatically
- No DR or BDR election required
- Default OSPF hello is 10 sec and dead interval is 40 sec

Non Broadcast Multi-access Network

- A single interface interconnects multiple sites like Frame Relay/ATM/X.25
- NBMA topologies support multiple routers, but without broadcasting capabilities
- OSPF neighbor relation need to create manually, DR/BDR will be elected
- Default OSPF hello is 30 sec and dead interval is 120 sec

OSPF Areas

- Area is a group of contiguous hosts and networks
 - Reduces routing traffic
- Per area topology database
 Invisible outside the area
- Backbone area MUST be contiguous
 - All other areas must be connected to the backbone

Virtual Links between OSPF Areas

- Virtual Link is used when it is not possible to physically connect the area to the backbone
- ISPs avoid designs which require virtual links
 - Increases complexity
 - Decreases reliability and scalability

Classification of Routers

- Internal Router (IR)
- Area Border Router (ABR)
- Backbone Router (BR)
- Autonomous System Border Router (ASBR)

APNIC

 routes imported into OSPF from other protocol or static routes

External Routes

- Prefixes which are redistributed into OSPF from other protocols
- Flooded unaltered throughout the AS
 - Recommendation: Avoid redistribution!!
- OSPF supports two types of external metrics
 - Type 1 external metrics
 - Type 2 external metrics (Cisco IOS default)

External Routes

• Type 1 external metric: metrics are added to the summarised internal link cost

External Routes

• Type 2 external metric: metrics are compared without adding to the internal link cost

Topology/Link State Database

- A router has a separate LS database for each area to which it belongs
- All routers belonging to the same area have identical database
- SPF calculation is performed separately for each area
- LSA flooding is bounded by area
- Recommendation:
 - Limit the number of areas a router participates in!!
 - 1 to 3 is fine (typical ISP design)
 - >3 can overload the CPU depending on the area topology complexity

Different Types of LSAs

- Six distinct type of LSAs
 - Type 1 : Router LSA
 - Type 2 : **Network LSA**
 - Type 3 & 4: Summary LSA
 - Type 5 & 7:
 - Type 6:
 - Type 9, 10 & 11:
- External LSA (Type 7 is for NSSA)
 - Group membership LSA
- Opaque LSA (9: Link-Local, 10: Area)

Router LSA (Type 1)

- Describes the state and cost of the router's links to the area
- All of the router's links in an area must be described in a single LSA
- Flooded throughout the particular area and no more
- Router indicates whether it is an ASBR, ABR, or end point of virtual link

Network LSA (Type 2)

- Generated for every transit broadcast and NBMA network
- Describes all the routers attached to the network
- Only the designated router originates this LSA
- Flooded throughout the area and no more

Summary LSA (Type 3 and 4)

- Describes the destination outside the area but still in the AS
- Flooded throughout a single area
- Originated by an ABR
- Only inter-area routes are advertised into the backbone
- Type 4 is the information about the ASBR

External LSA (Type 5 and 7)

- Defines routes to destination external to the AS
- Default route is also sent as external
- Two types of external LSA:
 - E1: Consider the total cost up to the external destination
 - E2: Considers only the cost of the outgoing interface to the external destination
- (Type 7 LSAs used to describe external LSA for one specific OSPF area type)

Types of Areas

- Regular
- Stub
- Totally Stubby
- Not-So-Stubby
- Only "regular" areas are useful for ISPs
 - Other area types handle redistribution of other routing protocols into OSPF – ISPs don' t redistribute anything into OSPF
- The next slides describing the different area types are provided for information only

Regular Area (Not a Stub)

• From Area 1's point of view, summary networks from other areas are injected, as are external networks such as X.1

Normal Stub Area

• Summary networks, default route injected

Totally Stubby Area

- Only a default route injected
 - Default path to closest area border router
- Command is area x stub no-summary

ISP Use of Areas

- ISP networks use:
 - Backbone area
 - Regular area
- Regular area
 - Summarisation of point to point link addresses used within areas
 - Loopback addresses allowed out of regular areas without summarisation

Questions?

APNIC

Overview

Routing Workshop (3 Days)

- Introduction to IP Routing
- IPv6 Address Structure
- Routing Lab Topology Overview
- Operation of OSPF Routing Protocol

Lab Exercise on Basic Router and OSPF Dynamic Routing Configuration

- Basic BGP Operation
- BGP Attributes and Path Selection Process
- BGP Scaling Techniques
- Lab Exercise on iBGP, eBGP, RR, Peer group etc
- Internet Exchange [IX] Policy Overview and Configuration requirement

Scenario:

- Training ISP need to configure OSPF as IGP for both IPv4 and IPv6
- Dual stack mechanism will be used to ensure both IPv4 and IPv6 operation
- OSPFv3 supports IPv6 routed protocol
- IGP is used to carry next hop only for BGP

Minimum Router OS require for OSPF3:

- Cisco IOS
 - 12.2(15)T or later (For OSPFv3)
 - 12.2(2)T or later (For IPv6 support)
- Jun OS
 - JUNOS 8.4 or later

- Before enabling OSPF3 on an Interface following steps must be done on a Router:
 - Enable IPv6 unicast routing
 - Enable IPv6 CEF (Optional)

```
config t
ipv6 unicast-routing
ipv6 cef (distributed cef)
```


Configure interface for both IPv4 and IPv6:

interface e1/0
description WAN R1-R2
no ip redirects
no ip directed-broadcast
no ip unreachables
ip address 172.16.10.2 255.255.255.252
no shutdown

interface e1/0
ipv6 address 2406:6400:000F:0000::2/64
ipv6 enable

Verify Interface configuration:

sh ip interface e0/0
ping 172.16.10.1

sh ipv6 interface e0/0
ping 2406:6400:000F:0000::2

IPv4 Interface configuration for Router1:

interface loopback 0 description Router1 Loopback no ip redirects no ip directed-broadcast no ip unreachables ip address 172.16.15.1 255.255.255.255 no shutdown interface e1/0 description WAN R1-R2 no ip redirects no ip directed-broadcast no ip unreachables ip address 172.16.10.2 255.255.255.252

no shutdown

IPv4 Interface configuration for Router1:

interface e1/1 description WAN R1-R3 no ip redirects no ip directed-broadcast no ip unreachables ip address 172.16.10.9 255.255.255.252 no shutdown interface fa0/0 description Router1 customer network no ip redirects no ip directed-broadcast no ip unreachables no cdp enable ip address 172.16.16.1 255.255.255.0 no shutdown

IPv6 Interface configuration for Router1:

interface loopback 0 ipv6 address 2406:6400:0000:0000::1/128 ipv6 enable interface e1/0 ipv6 address 2406:6400:000F:0000::2/64 ipv6 enable interface e1/1 ipv6 address 2406:6400:000F:0002::1/64 *ipv6* enable interface fa0/0 ipv6 address 2406:6400:0100:0000::1/48 ipv6 enable

- OSPF Configuration for IPv4:
 - OSPF for IPv4 can be configured from global configuration mode
 - Interface mode configuration will also activate OSPF process on your running config

- OSPF Configuration for IPv6:
 - OSPF for IPv6 need to configure from Interface configuration mode
 - Interface mode configuration will automatically activate
 OSPF process on your running config

- OSPF for IPv6 Configuration Command:
- router ospf 17821
- log-adjacency-changes
- passive-interface default
- network 172.16.15.1 0.0.0.0 area 1
- no passive-interface e1/0
- network 172.16.10.0 0.0.0.3 area 1
- no passive-interface e1/1
- network 172.16.10.8 0.0.0.3 area 1

OSPF for IPv6 Configuration Command: interface loopback 0 ipv6 ospf 17821 area 1 interface e1/0 *ipv6 ospf 17821 area 1* interface e1/1 *ipv6 ospf 17821 area 1*


```
Verify OSPF configuration:
sh run
!
interface Ethernet1/0
 description WAN R1-R2
 ip address 172.16.10.2 255.255.255.252
 no ip redirects
 no ip unreachables
 half-duplex
 ipv6 address 2406:6400:F::2/64
 ipv6 enable
 ipv6 ospf 17821 area 1
```


Example OSPF configuration for Router1:

router ospf 17821 log-adjacency-changes passive-interface default network 172.16.15.1 0.0.0 area 1 no passive-interface e1/0 network 172.16.10.0 0.0.0.3 area 1 no passive-interface e1/1

Example OSPF configuration for Router1:

interface loopback 0
ipv6 ospf 17821 area 1
interface e1/0
ipv6 ospf 17821 area 1
interface e1/1
ipv6 ospf 17821 area 1

OSPF Packet Type

Five OSPF Packet Type:

t: Specifies the OSPF packet type:

1: hello	[every 10 sec]
2: DBD	[Database Descriptor Packet]
3: LSR	[Link State Request Packet]
4: LSU	[Link State Update Packet]
5: LSAck	[Link State Ack Packet]

debug ip ospf packet debug ipv6 ospf packet

Questions?

APNIC

Overview

Routing Workshop (3 Days)

- Introduction to IP Routing
- Routing Protocol Basic
- IPv6 Address Structure
- Routing Lab Topology Overview
- Operation of OSPF Routing Protocol
- Lab Exercise on Basic Router and OSPF Dynamic Routing Configuration

- Basic BGP Operation

- BGP Attributes and Path Selection Process
- BGP Scaling Techniques
- Lab Exercise on iBGP, eBGP, RR, Peer group etc
- Internet Exchange [IX] Policy Overview and Configuration requirement

What is Border Gateway Protocol?

- BGP:
 - A path vector routing protocol to exchange routing information between different Autonomous System (AS)
 - ASes are the building block of BGP operational unites
 - AS is a collection of routers with a common routing policy
 - Specification is defined in RFC4271

What is an Autonomous System (AS)

- An AS is a collection of networks with same routing policy
- Usually under a single administrative control unit
- A public AS is identified by a unique number called AS number
- Around 32000 ASes are visible on the Internet now

BGP features

- Path Vector Routing Protocol
- Send incremental updates to peers
- Runs over TCP Port 179
- Select path based on routing policy/ organization's business requirement
- Support Classless Inter Domain Routing (CIDR) concept
- Widely used in today's Internet Backbone
- Current BGP version is MP-BGP

What is Path Vector Routing Protocol

- A path vector routing protocol is used to span different autonomous systems
- It defines a route as a collection of a number of AS that it passes through from source AS to destination AS
- This list of ASes are called AS path and used to avoid routing loop
- AS path is also used to select path to destination

What is AS path?

• An AS path example:

APNIC

BGP Traffic Arrangement Definition

- Transit
 - Forwarding traffic through the network usually for a fee
 - I.e Internet service from upstream ISP
- Peering
 - Exchanging traffic without any fee
 - I.e Connection in an IXP
- Default
 - Where to send traffic if there no explicit route match in the routing table

What is Default Free Zone?

- Default free zone is made up of Tire One ISP routers which have explicit routing information about every part of the Global Internet
- So there is no need of default route
- If there is no destination network match, then that prefix is still not announced/ used by any ISP yet

ISP Hireracial Connection

• Connectivity Diagram:

BGP General Operation

- BGP maintain 3 database i.e Neighbor Table, BGP Table and Forwarding Table
- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs them on the forwarding tables
- Best path is sent to external BGP neighbors
- Policies are applied by influencing the best path selection

Constructing the Forwarding Table

- BGP "In" process
 - Receives path information from peers
 - Results of BGP path selection placed in the BGP table "best path" flagged
- BGP "Out" process
 - Announce "best path" information to peers
- Best path installed in forwarding table if:
 - Prefix and prefix length are equal
 - Lowest protocol distance

Constructing the Forwarding Table

• Flowchart:

BGP Terminology

- Neighbor
 - Any two routers that have formed a TCP connection to exchange BGP routing information are called peers or neighbors
- iBGP
 - iBGP refers to the BGP neighbor relationship within the same AS.
 - The neighbors do not have to be directly connected.
- eBGP
 - When BGP neighbor relationship are formed between two peers belongs to different AS are called eBGP.
 - EBGP neighbors by default need to be directly connected.

Building Neighbor Relationship

- After adding BGP neighbor:
 - Both router establish a TCP connection and send open message
 - If open message is accepted then both send keepalive message to each other to confirm open message
 - After both confirm open message by sending keepalive message they establish BGP neighbor relationship and exchange routing information

BGP message type

- Open Message
 - To establish BGP neighbor relationship
- Keepalive message
 - Only contain message header to maintain neighbor relationship. Sent every periodic interval
- Update message
 - Contain path information. One update message contain one path information. Multiple path need multiple update message to be sent
- Notification message
 - Sent when an error condition occur and BGP connection closed immediately

BGP Open message

- Open message contain:
 - BGP Version number
 - AS number of the local router
 - BGP holdtime in second to elapse between the successive keepalive message
 - BGP router ID which is a 32 bit number. Usually an IPv4 address is used as router ID
 - Optional parameters i.e types, length and value encoded. An example optional parameter is session authentication info

BGP Keepalive Message

- Send between BGP peers after every periodic interval (60 Sec)
- It refresh hold timer from expiration (180sec)
- A keepalive message contain only the message header

BGP Update Message

- An update message contain:
 - Withdrawn routes: a list contain address prefix that are withdrawn from service
 - Path attributes: includes AS path, origin code, local pref etc
 - Network-layer reachablity information: includes a list of address prefix reachable by this path

BGP Notification message

- Only sent when an error condition occur and detected in a network and BGP connection is closed immediately
- Notification message contain an error code, an error subcode, and data that are related to that error

BGP Neighbor Relationship States

- BGP neighbor goes through following steps:
 - Idle: Router is searching its routing table to reach the neighbor
 - Connect: Router found route and completed TCP three-way handshake
 - Open Sent: Open message sent with the parameter for BGP session
 - Open Confirm: Router receive agreement on the parameter to establish BGP session
 - Established: Peering is established and routing information exchange began

Troubleshoot BGP Neighbor Relation

- Idle:
 - The router can not find address of the neighbor in its routing table
- Active:
 - Router found address of the neighbor in its routing table sent open message and waiting for the response from the neighbor
- Cycle between Active/Idle
 - Neighbor might peer with wrong address
 - Does not have neighbor statement on the other side
 - BGP open message source IP address does not match with remote side neighbor statement or no route to source IP address

iBGP Peering

- BGP peer within the same AS
- Not required to be directly connected
- iBGP peering require full mesh peering
 - Within an AS all iBGP speaker must peer with other iBGP speaker
 - They originate connected network
 - Pass on prefixes learned from outside AS
 - They do not forward prefixes learned from other iBGP peer

Training ISP IPV6 Addressing Pan

Training ISP IPv6 Address Plan

iBGP Peering with Loopback Interface

- If iBGP speakers has multiple connection then it is advisable to peer with loopback
- Connected network can go down which might loose iBGP peering
- Loopback interface will never go down

iBGP Neighbor Update Source

- This command allows the BGP process to use the IP address of a specified interface as the source IP address of all BGP updates to that neighbor
- A loopback interface is usually used as it will never goes down as long as the router is operational
- All BGP message will use the referenced interface as source of the messages

eBGP Peering

- Peering with BGP speaker in different AS
- Peers should be directly connected and share same WAN link
- eBGP neighbors are usually routed through connected network

BGP Next Hop Behavior

- BGP is an AS-by-AS routing protocol not a router-by router routing protocol.
- In BGP, the next hop does not mean the next router it means the IP address to reach the next AS
 - I.e Router A advertise
 150.10.0.0/16 and 160.10.0.0/16
 to router B in eBGP with next hop
 150.10.1.1
 - Router B will update Router C in iBGP keeping the next hop unchanged

iBGP Next Hop

- Next hop is iBGP router loopback address
- Recursive route look-up
- Loopback address need to announce through IGP (OSPF)

BGP Synchronous Rule

- BGP do not use or advertise any route to an external neighbor learned by iBGP until a matching route has been learned from an IGP i.e OSPF or static
- It ensure consistency of information throughout the AS
- Avoid black hole route within an AS
- It is safe to turn off if all routers with in the AS run full-mesh iBGP
- Advisable to disable this feature (BCP)

Questions?

APNIC

Overview

Routing Workshop (3 Days)

- Introduction to IP Routing
- Routing Protocol Basic
- IPv6 Address Structure
- Routing Lab Topology Overview
- Operation of OSPF Routing Protocol
- Lab Exercise on Basic Router and OSPF Dynamic Routing Configuration
- Basic BGP Operation
- BGP Attributes and Path Selection Process
- BGP Scaling Techniques
- Lab Exercise on iBGP, eBGP, RR, Peer group etc
- Internet Exchange [IX] Policy Overview and Configuration requirement

What Is an Attribute?

- Part of a BGP Update
- Describes the characteristics of prefix
- Can either be transitive or non-transitive
- Some are mandatory

BGP Attributes

BGP metrics are called path attributes. Here is the classifications BGP attributes:

Well-Known Attributes

- Must be recognized by all compliant BGP implementations
- Are propagated to other neighbors

Well-Known Mandatory Attributes

- Must be present in all update messages
- AS Path
- Next-hop
- Origin

Well-Known Discretionary Attributes

- May be present in update messages
- Local preference
- Atomic aggregate

Optional Attributes

- Recognized by some implementations (could be private) expected not to be recognized by everyone
- Recognized optional attributes are propagated to other neighbors based on their meaning

Optional Transitive Attributes

- If not recognized, are marked as partial and propagated to other neighbors

- Community

- Aggregator

Optional Non Transitive attributes

- Discarded if not recognized
- Multi Exit Discriminator (MED)

AS-Path

- Sequence of ASes a route has traversed
- Mandatory transitive
 attribute
- Used for:
 - Loop detection
 - Applying policy

207

AS-Path (with 16 and 32-bit ASNs)

AS-Path Loop Detection

APNIC

Next Hop

iBGP Next Hop

APNIC

Third Party Next Hop

APNIC

120.68.1.0/24 150.1.1.3

- eBGP between Router A and Router B
- eBGP between Router B and Router C
- 120.68.1/24 prefix has next hop address of 150.1.1.3 – this is used by Router A instead of 150.1.1.2 as it is on same subnet as Router B
- More efficient
- No extra config needed

Next Hop Best Practice

- Cisco IOS default is for external next-hop to be propagated unchanged to iBGP peers
 - This means that IGP has to carry external next-hops
 - Forgetting means external network is invisible
 - With many eBGP peers, it is unnecessary extra load on IGP
- ISP Best Practice is to change external next-hop to be that of the local router

neighbor x.x.x.x next-hop-self

Next Hop (Summary)

- IGP should carry route to next hops
- Recursive route look-up
- Unlinks BGP from actual physical topology
- Use "next-hop-self" for external next hops
- Allows IGP to make intelligent forwarding decision

Origin

- Conveys the origin of the prefix
- Historical attribute
 - Used in transition from EGP to BGP
- Transitive and Mandatory Attribute
- Influences best path selection
- Three values: IGP, EGP, incomplete
 - IGP generated by BGP network statement
 - EGP generated by EGP
 - incomplete redistributed from another routing protocol

Aggregator

- Conveys the IP address of the router or BGP speaker generating the aggregate route
- Optional & transitive attribute
- Useful for debugging purposes
- Does not influence best path selection
- Creating aggregate using "aggregate-address" sets the aggregator attribute:

router bgp 100 aggregate-address 100.1.0.0 255.255.0.0

Local Preference

Local Preference

- Non-transitive and optional attribute
- Local to an AS only
 - Default local preference is 100 (IOS)
- Used to influence BGP path selection
 determines best path for *outbound* traffic
- Path with highest local preference wins

Local Preference

```
    Configuration of Router B:

 router bgp 400
  neighbor 120.5.1.1 remote-as 300
  neighbor 120.5.1.1 route-map local-pref in
 route-map local-pref permit 10
  match ip address prefix-list MATCH
  set local-preference 800
 route-map local-pref permit 20
 ip prefix-list MATCH permit 160.10.0.0/16
```


Multi-Exit Discriminator (MED)

Multi-Exit Discriminator

- Inter-AS non-transitive & optional attribute
- Used to convey the relative preference of entry points
 - determines best path for inbound traffic
- Comparable if paths are from same AS
 - bgp always-compare-med allows comparisons of MEDs from different ASes
- Path with lowest MED wins
- Absence of MED attribute implies MED value of zero (RFC4271)

Deterministic MED

- IOS compares paths in the order they were received
 - Leads to inconsistent decisions when comparing MED
- Deterministic MED
 - Configure on all bgp speaking routers in AS
 - Orders paths according to their neighbouring ASN
 - Best path for each neighbour ASN group is selected
 - Overall bestpath selected from the winners of each group

```
router bgp 100
bgp deterministic-med
```


MED & IGP Metric

- IGP metric can be conveyed as MED
 - set metric-type internal in route-map
 - enables BGP to advertise a MED which corresponds to the IGP metric values
 - changes are monitored (and re-advertised if needed) every 600s
 - bgp dynamic-med-interval <secs>

Multi-Exit Discriminator

```
    Configuration of Router B:

   router bgp 400
    neighbor 120.5.1.1 remote-as 200
    neighbor 120.5.1.1 route-map set-med out
   route-map set-med permit 10
    match ip address prefix-list MATCH
    set metric 1000
   route-map set-med permit 20
   ip prefix-list MATCH permit 120.68.1.0/24
```


Weight

- Not really an attribute local to router
- Highest weight wins
- Applied to all routes from a neighbour

```
neighbor 120.5.7.1 weight 100
```

• Weight assigned to routes based on filter

neighbor 120.5.7.3 filter-list 3 weight 50

Weight – Used to help Deploy RPF

- Best path to AS4 from AS1 is always via B due to local-pref
- But packets arriving at A from AS4 over the direct C to A link will pass the RPF check as that path has a priority due to the weight being set
 - If weight was not set, best path back to AS4 would be via B, and the RPF check would fail

Aside: What is uRPF?

- Router compares source address of incoming packet with FIB entry
 - If FIB entry interface matches incoming interface, the packet is forwarded
 - If FIB entry interface does not match incoming interface, the packet is dropped

Weight – Used for traffic policy

- Best path to AS4 from AS1 is always via B due to local-pref
- But customers connected directly to Router A use the link to AS7 as best outbound path because of the high weight applied to routes heard from AS7
 - If the A to D link goes down, then the Router A customers see best path via Router B and AS4

Community

- Communities are described in RFC1997
 - Transitive and Optional Attribute
- 32 bit integer
 - Represented as two 16 bit integers (RFC1998)
 - Common format is <local-ASN>:xx
 - 0:0 to 0:65535 and 65535:0 to 65535:65535 are reserved
- Used to group destinations
 Each destination could be member of multiple communities
- Very useful in applying policies within and between ASes

Community Example (before)

Community Example (after)

Well-Known Communities

- Several well known communities
 - www.iana.org/assignments/bgp-well-known-communities
- no-export
 - do not advertise to any eBGP peers
- no-advertise
 - do not advertise to any BGP peer
- no-export-subconfed
 65535:65283
 - do not advertise outside local AS (only used with confederations)
- no-peer

- 65535:65284
- do not advertise to bi-lateral peers (RFC3765)

65535:65281

No-Export Community

- AS100 announces aggregate and subprefixes
 Intention is to improve loadsharing by leaking subprefixes
- Subprefixes marked with no-export community
- Router G in AS200 does not announce prefixes with noexport community set

No-Peer Community

 Sub-prefixes marked with no-peer community are not sent to bi-lateral peers

They are only sent to upstream providers

What about 4-byte ASNs?

- Communities are widely used for encoding ISP routing policy
 - 32 bit attribute
- RFC1998 format is now "standard" practice
 ASN:number
- Fine for 2-byte ASNs, but 4-byte ASNs cannot be encoded
- Solutions:
 - Use "private ASN" for the first 16 bits
 - Wait for http://datatracker.ietf.org/doc/draft-ietf-idras4octet-extcomm-generic-subtype/ to be implemented

BGP Path Selection Algorithm for Cisco IOS: Part One

- 1. Do not consider path if no route to next hop
- Do not consider iBGP path if not synchronised (Cisco IOS)
- 3. Highest weight (local to router)
- 4. Highest local preference (global within AS)
- 5. Prefer locally originated route
- 6. Shortest AS path

BGP Path Selection Algorithm for Cisco IOS: Part Two

- 7. Lowest origin code
 - IGP < EGP < incomplete</p>
- 8. Lowest Multi-Exit Discriminator (MED)
 - If bgp deterministic-med, order the paths by AS number before comparing
 - If bgp always-compare-med, then compare for all paths
 - Otherwise MED only considered if paths are from the same AS (default)

BGP Path Selection Algorithm for Cisco IOS: Part Three

- 9. Prefer eBGP path over iBGP path
- 10. Path with lowest IGP metric to next-hop
- 11. For eBGP paths:
 - If multipath is enabled, install N parallel paths in forwarding table
 - If router-id is the same, go to next step
 - If router-id is not the same, select the oldest path

BGP Path Selection Algorithm for Cisco IOS: Part Four

- 12. Lowest router-id (originator-id for reflected routes)
- 13. Shortest cluster-list
 - Client must be aware of Route Reflector attributes!
- 14. Lowest neighbour address

Questions?

APNIC

Overview

Routing Workshop (3 Days)

- Introduction to IP Routing
- Routing Protocol Basic
- IPv6 Address Structure
- Routing Lab Topology Overview
- Operation of OSPF Routing Protocol
- Lab Exercise on Basic Router and OSPF Dynamic Routing Configuration
- Basic BGP Operation
- BGP Attributes and Path Selection Process
- BGP Scaling Techniques
- Lab Exercise on iBGP, eBGP, RR, Peer group etc
- Internet Exchange [IX] Policy Overview and Configuration requirement

BGP Scaling Techniques

- Original BGP specification and implementation was fine for the Internet of the early 1990s
 - But didn't scale
- Issues as the Internet grew included:
 - Scaling the iBGP mesh beyond a few peers?
 - Implement new policy without causing flaps and route churning?
 - Keep the network stable, scalable, as well as simple?

BGP Scaling Techniques

- Current Best Practice Scaling Techniques
 - Route Refresh
 - Peer-groups
 - Route Reflectors (and Confederations)
- Deprecated Scaling Techniques
 - Soft Reconfiguration
 - Route Flap Damping

Dynamic Reconfiguration

Non-destructive policy changes

Route Refresh

- Policy Changes:
 - Hard BGP peer reset required after every policy change because the router does not store prefixes that are rejected by policy
- Hard BGP peer reset:
 - Tears down BGP peering
 - Consumes CPU
 - Severely disrupts connectivity for all networks
- Solution:
 - Route Refresh

Route Refresh Capability

- Facilitates non-disruptive policy changes
- No configuration is needed
 - Automatically negotiated at peer establishment
- No additional memory is used
- Requires peering routers to support "route refresh capability" – RFC2918
- Tell peer to resend full BGP announcement clear ip bgp x.x.x.x [soft] in
- Resend full BGP announcement to peer clear ip bgp x.x.x.x [soft] out

Dynamic Reconfiguration

- Use Route Refresh capability
 - Supported on virtually all routers
 - find out from "show ip bgp neighbor"
 - Non-disruptive, "Good For the Internet"
- Only hard-reset a BGP peering as a last resort

Consider the impact to be equivalent to a router reboot

Cisco's Soft Reconfiguration

- Now deprecated but:
- Router normally stores prefixes which have been received from peer after policy application
 - Enabling soft-reconfiguration means router also stores prefixes/attributes received prior to any policy application
 - Uses more memory to keep prefixes whose attributes have been changed or have not been accepted
- Only useful now when operator requires to know which prefixes have been sent to a router prior to the application of any inbound policy

Cisco's Soft Reconfiguration

Configuring Soft Reconfiguration

```
router bgp 100
```

- neighbor 1.1.1.1 remote-as 101
- neighbor 1.1.1.1 route-map infilter in
- neighbor 1.1.1.1 soft-reconfiguration inbound
- ! Outbound does not need to be configured !
- Then when we change the policy, we issue an exec command

clear ip bgp 1.1.1.1 soft [in | out]

- Note:
 - When "soft reconfiguration" is enabled, there is no access to the route refresh capability
 - clear ip bgp 1.1.1.1 [in | out] will also do a soft refresh

Peer Groups

APNIC

Peer Groups

- Problem how to scale iBGP
 - Large iBGP mesh slow to build
 - iBGP neighbours receive the same update
 - Router CPU wasted on repeat calculations
- Solution peer-groups
 - Group peers with the same outbound policy
 - Updates are generated once per group

Peer Groups – Advantages

- Makes configuration easier
- Makes configuration less prone to error
- Makes configuration more readable
- Lower router CPU load
- iBGP mesh builds more quickly
- Members can have different inbound policy
- Can be used for eBGP neighbours too!

Configuring a Peer Group

router bgp 100

- neighbor ibgp-peer peer-group
- neighbor ibgp-peer remote-as 100
- neighbor ibgp-peer update-source loopback 0
- neighbor ibgp-peer send-community
- neighbor ibgp-peer route-map outfilter out
- neighbor 1.1.1.1 peer-group ibgp-peer
- neighbor 2.2.2.2 peer-group ibgp-peer
- neighbor 2.2.2.2 route-map infilter in

neighbor 3.3.3.3 peer-group ibgp-peer

! note how 2.2.2.2 has different inbound filter from peer-group !

APNIC

- neighbor 160.89.1.6 filter-list infilter in
- neighbor 160.89.1.6 peer-group external-peer
- neighbor 160.89.1.6 remote-as 400
- neighbor 160.89.1.4 peer-group external-peer
- neighbor 160.89.1.4 remote-as 300
- neighbor 160.89.1.2 peer-group external-peer
- neighbor 160.89.1.2 remote-as 200
- neighbor external-peer route-map set-metric out
- neighbor external-peer send-community
- neighbor external-peer peer-group
- router bgp 100
- **Configuring a Peer Group**

Peer Groups

- Always configure peer-groups for iBGP
 - Even if there are only a few iBGP peers
 - Easier to scale network in the future
- Consider using peer-groups for eBGP
 - Especially useful for multiple BGP customers using same AS (RFC2270)
 - Also useful at Exchange Points where ISP policy is generally the same to each peer
- Peer-groups are essentially obsoleted
 - But are still widely considered best practice
 - Replaced by update-groups (internal coding not configurable)
 - Enhanced by peer-templates (allowing more complex constructs)

Route Reflectors

Scaling the iBGP mesh

APNIC

Scaling iBGP mesh

Avoid ½n(n-1) iBGP mesh

```
n=1000 ⇒ nearly
half a million
ibgp sessions!
```


Two solutions

- Route reflector simpler to deploy and run
- Confederation more complex, has corner case advantages

Route Reflector: Principle

Route Reflector: Principle

Route Reflector

- Reflector receives path from clients and nonclients
- Selects best path
- If best path is from client, reflect to other clients and non-client
- If best path is from non-client, reflect to clients only
- Non-meshed clients
- Described in RFC4456
 APNIC

Route Reflector Topology

- Divide the backbone into multiple clusters
- At least one route reflector and few clients per cluster
- Route reflectors are fully meshed
- Clients in a cluster could be fully meshed
- Single IGP to carry next hop and local routes

Route Reflectors: Loop Avoidance

- Originator_ID attribute
 - Carries the RID of the originator of the route in the local AS (created by the RR)
- Cluster_list attribute
 - The local cluster-id is added when the update is sent by the RR
 - Cluster-id is router-id (address of loopback)
 - Do NOT use bgp cluster-id x.x.x.x

Route Reflectors: Redundancy

- Multiple RRs can be configured in the same cluster not advised!
 - All RRs in the cluster must have the same cluster-id (otherwise it is a different cluster)
- A router may be a client of RRs in different clusters
 - Common today in ISP networks to overlay two clusters redundancy achieved that way
 - \rightarrow Each client has two RRs = redundancy

Route Reflectors: Redundancy

Route Reflector: Benefits

- Solves iBGP mesh problem
- Packet forwarding is not affected
- Normal BGP speakers co-exist
- Multiple reflectors for redundancy
- Easy migration
- Multiple levels of route reflectors

Route Reflectors: Migration

- Where to place the route reflectors?
 - Follow the physical topology!
 - This will guarantee that the packet forwarding won't be affected
- Configure one RR at a time
 - Eliminate redundant iBGP sessions
 - Place one RR per cluster

Route Reflectors: Migration

Migrate small parts of the network, one part at a time.

268

Configuring a Route Reflector

• Router D configuration:

```
router bgp 100
....
neighbor 1.2.3.4 remote-as 100
neighbor 1.2.3.4 route-reflector-client
neighbor 1.2.3.5 remote-as 100
neighbor 1.2.3.5 route-reflector-client
neighbor 1.2.3.6 remote-as 100
neighbor 1.2.3.6 route-reflector-client
```


. . .

BGP Scaling Techniques

- These 3 techniques should be core requirements on all ISP networks
 - Route Refresh (or Soft Reconfiguration)
 - Peer groups
 - Route Reflectors

Confederations

- Divide the AS into sub-AS
 - eBGP between sub-AS, but some iBGP information is kept
 - Preserve NEXT_HOP across the sub-AS (IGP carries this information)
 - Preserve LOCAL_PREF and MED
- Usually a single IGP
- Described in RFC5065

Confederations

- Visible to outside world as single AS "Confederation Identifier"
 - Each sub-AS uses a number from the private space (64512-65534)
- iBGP speakers in sub-AS are fully meshed
 - The total number of neighbors is reduced by limiting the full mesh requirement to only the peers in the sub-AS

Confederations

Configuration (Router C):

router bgp 65532 bgp confederation identifier 200 bgp confederation peers 65530 65531 neighbor 141.153.12.1 remote-as 65530 neighbor 141.153.17.2 remote-as 65531

Confederations: Next Hop

Confederation: Principle

- Local preference and MED influence path selection
- Preserve local preference and MED across sub-AS boundary
- Sub-AS eBGP path administrative distance

Confederations: Loop Avoidance

- Sub-AS traversed are carried as part of AS-path
- AS-sequence and AS path length
- Confederation boundary
- AS-sequence should be skipped during MED comparison

Confederations: AS-Sequence

Route Propagation Decisions

- Same as with "normal" BGP:
 - From peer in same sub-AS \rightarrow only to external peers
 - From external peers \rightarrow to all neighbors
- "External peers" refers to
 - Peers outside the confederation
 - Peers in a different sub-AS
 - Preserve LOCAL_PREF, MED and NEXT_HOP

Confederations (cont.)

• Example (cont.):

BGP table version is 78, local router ID is 141.153.17.1 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path ***>** 10.0.0.0 141.153.14.3 0 100 (65531) 1 i 0 ***>** 141.153.0.0 141.153.30.2 0 100 0 (65530) i *> 144.10.0.0 141.153.12.1 0 100 0 (65530) i *> 199.10.10.0 141.153.29.2 100 0 (65530) 1 i 0

More points about confederations

- Can ease "absorbing" other ISPs into your ISP
 - e.g., if one ISP buys another
 - (can use local-as feature to do a similar thing)
- You can use route-reflectors with confederation sub-AS to reduce the sub-AS iBGP mesh

Confederations: Benefits

- Solves iBGP mesh problem
- Packet forwarding not affected
- Can be used with route reflectors
- Policies could be applied to route traffic between sub-AS's

Confederations: Caveats

- Minimal number of sub-AS
- Sub-AS hierarchy
- Minimal inter-connectivity between sub-AS's
- Path diversity
- Difficult migration
 - BGP reconfigured into sub-AS
 - must be applied across the network

RRs or Confederations

	Internet Connectivity	Multi-Level Hierarchy	Policy Control	Scalability	Migration Complexity
Confederations	Anywhere in the Network	Yes	Yes	Medium	Medium to High
Route Reflectors	Anywhere in the Network	Yes	Yes	Very High	Very Low

Most new service provider networks now deploy Route Reflectors from Day One

Route Flap Damping

- For many years, Route Flap Damping was a strongly recommended practice
- Now it is strongly discouraged as it causes far greater network instability than it cures
- But first, the theory...

Route Flap Damping

- Route flap
 - Going up and down of path or change in attribute
 - BGP WITHDRAW followed by UPDATE = 1 flap
 - eBGP neighbour going down/up is NOT a flap
 - Ripples through the entire Internet
 - Wastes CPU
- Damping aims to reduce scope of route flap propagation

Route Flap Damping (continued)

- Requirements
 - Fast convergence for normal route changes
 - History predicts future behaviour
 - Suppress oscillating routes
 - Advertise stable routes
- Implementation described in RFC 2439

Operation

- Add penalty (1000) for each flap
 Change in attribute gets penalty of 500
 - change in attribute gets penalty of s
- Exponentially decay penalty
 - half life determines decay rate
- Penalty above suppress-limit
 - do not advertise route to BGP peers
- Penalty decayed below reuse-limit
 - re-advertise route to BGP peers
 - penalty reset to zero when it is half of reuse-limit

Operation

Operation

- Only applied to inbound announcements from eBGP peers
- Alternate paths still usable
- Controlled by:
 - Half-life (default 15 minutes)
 - reuse-limit (default 750)
 - suppress-limit (default 2000)
 - maximum suppress time (default 60 minutes)

Configuration

- Fixed damping
 router bgp 100
 bgp dampening [<half-life> <reuse-value> <suppress penalty> <maximum suppress time>]
- Selective and variable damping
 bgp dampening [route-map <name>]
 route-map <name> permit 10
 match ip address prefix-list FLAP-LIST
 set dampening [<half-life> <reuse-value> <suppress penalty> <maximum suppress time>]
 ip prefix-list FLAP-LIST permit 192.0.2.0/24 le 32

Operation

- Care required when setting parameters
- Penalty must be less than reuse-limit at the maximum suppress time
- Maximum suppress time and half life must allow penalty to be larger than suppress limit

Configuration

- Examples ×
 - bgp dampening 15 500 2500 30
 - reuse-limit of 500 means maximum possible penalty is 2000 no prefixes suppressed as penalty cannot exceed suppress-limit
- Examples ✓
 - bgp dampening 15 750 3000 45
 - reuse-limit of 750 means maximum possible penalty is 6000 suppress limit is easily reached

Maths!

Maximum value of penalty is

max-penalty = reuse-limit x 2
$$\begin{pmatrix} max-suppress-time \\ half-life \end{pmatrix}$$

• Always make sure that suppressement is LLSS than max-penalty otherwise there will be no route damping

Route Flap Damping History

- First implementations on the Internet by 1995
- Vendor defaults too severe
 - RIPE Routing Working Group recommendations in ripe-178, ripe-210, and ripe-229
 - http://www.ripe.net/ripe/docs
 - But many ISPs simply switched on the vendors' default values without thinking

Serious Problems:

- "Route Flap Damping Exacerbates Internet Routing Convergence"
 - Zhuoqing Morley Mao, Ramesh Govindan, George Varghese & Randy H. Katz, August 2002
- "What is the sound of one route flapping?" – Tim Griffin, June 2002
- Various work on routing convergence by Craig Labovitz and Abha Ahuja a few years ago
- "Happy Packets"
 - Closely related work by Randy Bush et al

Problem 1:

- One path flaps:
 - BGP speakers pick next best path, announce to all peers, flap counter incremented
 - Those peers see change in best path, flap counter incremented
 - After a few hops, peers see multiple changes simply caused by a single flap \rightarrow prefix is suppressed

Problem 2:

- Different BGP implementations have different transit time for prefixes
 - Some hold onto prefix for some time before advertising
 - Others advertise immediately
- Race to the finish line causes appearance of flapping, caused by a simple announcement or path change → prefix is suppressed

Solution:

- Do NOT use Route Flap Damping whatever you do!
- RFD will unnecessarily impair access to:
 - Your network and
 - The Internet
- More information contained in RIPE Routing Working Group recommendations:
 - www.ripe.net/ripe/docs/ripe-378.[pdf,html,txt]
- Work is underway to try and find ways of making RFD usable:
 - http://datatracker.ietf.org/doc/draft-ymbk-rfd-usable/

Questions?

APNIC

Overview

Routing Workshop (3 Days)

- Introduction to IP Routing
- Routing Protocol Basic
- IPv6 Address Structure
- Routing Lab Topology Overview
- Operation of OSPF Routing Protocol
- Lab Exercise on Basic Router and OSPF Dynamic Routing Configuration
- Basic BGP Operation
- BGP Attributes and Path Selection Process
- BGP Scaling Techniques
- Lab Exercise on iBGP, eBGP, RR, Peer group, Local Pref, MED, AS-Path Prepend etc

Internet Exchange [IX] Policy Overview and Configuration requirement

- Scenario:
 - BGP4 is used in Training ISP network
 - iBGP is used between internal routers in Training ISP to carry external prefixes (i.e Customer & Global Internet Prefixes)
 - Route Reflector is used to resolve iBGP full mesh scalability issue.

- Scenario:
 - Transit service with upstream ASes is configured with eBGP
 - Customer network from downstream can also be configured with eBGP or static
 - Training ISP is having one native IPv6 transit and one tunnel IPv6 transit with AS45192 & AS131107 (2.35 as dot)

• Basic BGP Configuration:

router bgp 17821 address-family ipv6 no synchronization

Adding iBGP Neighbor:

```
router bgp 17821
address-family ipv6
!
neighbor 2406:6400:0000:0000::2 remote-as 17821
neighbor 2406:6400:0000:0000::2 update-source loopback 0
neighbor 2406:6400:0000:0000::2 activate
```

iBGP neighbor is always recommended with loopback interface

Announcing IPv6 Prefix:

router bgp 17821 address-family ipv6 ! neighbor 2406:6400:0000:0000::2 remote-as 17821 neighbor 2406:6400:0000:0000::2 update-source loopback 0 neighbor 2406:6400:0000:0000::2 activate !

network 2406:6400:0100:0000::/48


```
Add Pull-up route if needed:
router bgp 17821
address-family ipv6
!
neighbor 2406:6400:0000:0000::2 remote-as 17821
neighbor 2406:6400:0000:0000::2 update-source loopback 0
neighbor 2406:6400:0000:0000::2 activate
!
network 2406:6400:0100:0000::/48
exit
```

exit

ipv6 route 2406:6400:0100:0000::/48 null 0

APNIC

IPv4 iBGP Conf POP Router

Router1

config t router bgp 17821 address-family ipv4 no auto-summary no synchronization neighbor 172.16.15.2 remote-as 17821 neighbor 172.16.15.2 update-source loopback 0 neighbor 172.16.15.2 activate neighbor 172.16.15.3 remote-as 17821 neighbor 172.16.15.3 update-source loopback 0 neighbor 172.16.15.3 activate network 172.16.16.0 mask 255.255.254.0 exit exit ip route 172.16.16.0 255.255.254.0 null 0 permanent exit wr

IPv4 iBGP Configuration Verification

POP Router

- sh bgp ipv4 unicast summary
- sh bgp ipv4 unicast
- sh ip route bgp
- sh bgp ipv4 unicast neighbors [router 1.....router12
 loopback] advertised-routes
- sh bgp ipv4 unicast neighbors [router 1.....router12
 loopback] received-routes
- sh ip route [R2, R5, R8, R11 datacenter prefix]

IPv6 iBGP Conf POP Router

Router1

config t router bgp 17821 address-family ipv6 no synchronization neighbor 2406:6400:0000:0000::2 remote-as 17821 neighbor 2406:6400:0000:0000::2 update-source loopback 0 neighbor 2406:6400:0000:0000::2 activate neighbor 2406:6400:0000:0000::3 remote-as 17821 neighbor 2406:6400:0000:0000::3 update-source loopback 0 neighbor 2406:6400:0000:0000::3 activate network 2406:6400:0100:0000::/45 exit exit ipv6 route 2406:6400:0100:0000::/45 null 0 exit

wr

IPv6 iBGP Configuration Verification

POP Router

sh bgp ipv6 unicast summary

- sh bgp ipv6 unicast
- sh ipv6 route bgp
- sh bgp ipv6 unicast neighbors [router 1.....router12
 loopback] advertised-routes
- sh bgp ipv6 unicast neighbors [router 1.....router12
 loopback] received-routes

sh ipv6 route [R2, R5, R8, R11 datacenter prefix]

IPv4 iBGP Conf Core Router

Router2 Configuration

```
config t
router bgp 17821
address-family ipv4
no auto-summary
no synchronization
neighbor 172.16.15.1 remote-as 17821
neighbor 172.16.15.1 update-source loopback 0
neighbor 172.16.15.1 activate
neighbor 172.16.15.3 remote-as 17821
neighbor 172.16.15.3 update-source loopback 0
neighbor 172.16.15.3 activate
neighbor 172.16.15.5 remote-as 17821
neighbor 172.16.15.5 update-source loopback 0
neighbor 172.16.15.5 activate
neighbor 172.16.15.8 remote-as 17821
neighbor 172.16.15.8 update-source loopback 0
neighbor 172.16.15.8 activate
neighbor 172.16.15.11 remote-as 17821
neighbor 172.16.15.11 update-source loopback 0
neighbor 172.16.15.11 activate
network 172.16.0.0 mask 255.255.254.0
exit
exit
ip route 172.16.0.0 255.255.254.0 null 0 permanent
exit
Wr
```


IPv4 iBGP Conf Core Router

Router2 Configuration

```
config t
router bgp 17821
address-family ipv4
no auto-summary
no synchronization
neighbor 172.16.15.1 remote-as 17821
neighbor 172.16.15.1 update-source loopback 0
neighbor 172.16.15.1 activate
neighbor 172.16.15.3 remote-as 17821
neighbor 172.16.15.3 update-source loopback 0
neighbor 172.16.15.3 activate
neighbor 172.16.15.5 remote-as 17821
neighbor 172.16.15.5 update-source loopback 0
neighbor 172.16.15.5 activate
neighbor 172.16.15.8 remote-as 17821
neighbor 172.16.15.8 update-source loopback 0
neighbor 172.16.15.8 activate
neighbor 172.16.15.11 remote-as 17821
neighbor 172.16.15.11 update-source loopback 0
neighbor 172.16.15.11 activate
network 172.16.0.0 mask 255.255.254.0
exit
exit
ip route 172.16.0.0 255.255.254.0 null 0 permanent
exit
Wr
```


IPv4 iBGP Configuration Verification

Core Router

- sh bgp ipv4 unicast summary
- sh bgp ipv4 unicast
- sh ip route bgp
- sh bgp ipv4 unicast neighbors [router 1.....router12
 loopback] advertised-routes
- sh bgp ipv4 unicast neighbors [router 1.....router12
 loopback] received-routes
- sh ip route [R2, R5, R8, R11 datacenter prefix]

APNIC

IPv6 iBGP Conf Core Router

Router2 Configuration

config t router bgp 17821 address-family ipv6 no synchronization neighbor 2406:6400:0000:0000::1 remote-as 17821 neighbor 2406:6400:0000:0000::1 update-source loopback 0 neighbor 2406:6400:0000:0000::1 activate neighbor 2406:6400:0000:0000::3 remote-as 17821 neighbor 2406:6400:0000:0000::3 update-source loopback 0 neighbor 2406:6400:0000:0000::3 activate neighbor 2406:6400:0000:0000::5 remote-as 17821 neighbor 2406:6400:0000:0000::5 update-source loopback 0 neighbor 2406:6400:0000:0000::5 activate neighbor 2406:6400:0000:0000::8 remote-as 17821 neighbor 2406:6400:0000:0000::8 update-source loopback 0 neighbor 2406:6400:0000:0000::8 activate neighbor 2406:6400:0000:0000::11 remote-as 17821 neighbor 2406:6400:0000:0000::11 update-source loopback 0 neighbor 2406:6400:0000:0000::11 activate network 2406:6400:0001:0000::/48 exit exit ipv6 route 2406:6400:0001:0000::/48 null 0 exit wr

IPv6 iBGP Configuration Verification

- Core Router
- sh bgp ipv6 unicast summary
- sh bgp ipv6 unicast
- sh ipv6 route bgp
- sh bgp ipv6 unicast neighbors [router 1.....router12
 loopback] advertised-routes
- sh bgp ipv6 unicast neighbors [router 1.....router12
 loopback] received-routes
- sh ipv6 route [R2, R5, R8, R11 datacenter prefix]

APNIC

iBGP Full Mesh Issue

iBGP Full Mesh Issue

Route reflector configuration:

```
router bgp 17821
address-family ipv6
!
neighbor 2406:6400:0000:0000::1 remote-as 17821
neighbor 2406:6400:0000:0000::1 update-source loopback 0
neighbor 2406:6400:0000:0000::1 activate
!
```

neighbor 2406:6400:0000:0000::1 route-reflector-client

319

API

APNIC

IPv6 Native Transit Conf Plan

APN

IPv6 IOS Command For eBGP

Adding eBGP Neighbor:

```
router bgp 17821
address-family ipv6
!
neighbor 2406:6400:000D:0000::5 remote-as 45192
```

neighbor 2406:6400:000D:0000::5 activate

eBGP neighbor is always recommended with directly connected interface

IPv6 Native Transit Configuration

• Router5 config t router bgp 17821 address-family ipv6 neighbor 2406:6400:000D:0000::5 remote-as 45192 neighbor 2406:6400:000D:0000::5 activate neighbor 2406:6400:000E:0000::5 remote-as 45192 neighbor 2406:6400:000E:0000::5 activate exit exit exit

Wr

IPv6 Tunnel Transit Configuration

APN

6 to 4 Tunnel Configuration

IOS Command for Tunnel Interface:

Router2 config t interface Tunnel0 tunnel source 172.16.15.2 tunnel destination 192,168.1.1 tunnel mode ipv6ip ipv6 address 2406:6400:F:40::2/64 *ipv6 enable*

6 to 4 Tunnel Configuration

IOS Command for Tunnel Peering:

router bgp 17821
address-family ipv6
neighbor 2406:6400:F:40::1 remote-as 23456
neighbor 2406:6400:F:40::1 activate

Questions?

APNIC

Overview

Routing Workshop (3 Days)

- Introduction to IP Routing
- Routing Protocol Basic
- IPv6 Address Structure
- Routing Lab Topology Overview
- Operation of OSPF Routing Protocol
- Lab Exercise on Basic Router and OSPF Dynamic Routing Configuration
- Basic BGP Operation
- BGP Attributes and Path Selection Process
- BGP Scaling Techniques
- Lab Exercise on iBGP, eBGP, RR, Peer group etc
- Internet Exchange [IX] Policy Overview and Configuration requirement

- Two type of traffic exchange between ISPs
- Transit
 - Where ISP will pay to send/receive traffic
 - Downstream ISP will pay upstream ISP for transit service
- Peering
 - ISPs will not pay each other to interchange traffic
 - Works well if win win for both
 - Reduce cost on expensive transit link

IX Peering Model

- BLPA (Bi-Lateral Peering Agreement)
 - IX will only provide layer two connection/switch port to ISPs
 - Every ISPs will arrange necessary peering arrangement with others by their mutual business understanding.
- MLPA (Multi-Lateral Peering Agreement)
 - IX will provide layer two connection/switch port to ISPs
 - Each ISP will peer with a route server on the IX.
 - Route server will collect and distribute directly connected routes to every peers.

IXP Peering Policy

- BLPA is applicable where different categories of ISPs are connected in an IX
 - Large ISPs can choose to peer with large ISPs (base on their traffic volume)
 - Small ISPs will arrange peering with small ISPs
- Would be preferable for large ISPs
 - They will peer with selected large ISPs (Equal traffic interchange)
 - Will not loose business by peering with small ISP

IXP Peering Policy

- MLPA model works well to widen the IX scope of operation (i.e national IX).
- Easy to manage peering
 - Peer with the route server and get all available local routes.
 - Do not need to arrange peering with every ISPs connected to the IX.
- Unequal traffic condition can create not intersected situation to peer with route server

IXP Peering Policy

- Both peering model can be available in an IX.
- Member will select peering model i.e either BLPA or MLPA (Route Server Peering)
- IX will provide switch port
- Mandatory MLPA model some time not preferred by large ISP (Business Interest)
 - Can create not interested situation to connect to an IX

IXP Operating Cost

- Access link
- Link maintenance
- Utility
- Administration

IXP Cost Model

- Not for profit
- Cost sharing
- Membership based
- Commercial IX

IXP Network Diagram

• Required **global & interface** commands to enable IPv6

Router(Config)#ipv6 unicast-routing Router(Config)#ipv6 cef (optional)

Configure IPv6 address on interface

Router(Config-if)#ipv6 address 2001:0df0:00aa::1/64
Router(Config-if)#ipv6 enable

Verify IPv6 configuration

Router#sh ipv6 interface fa0/0

• Verify connectivity

Router#ping 2001:0df0:00aa::1

Required BGP commands to enable IPv6 routing

```
Router(config)# router bgp 1
Router2(config-router)#bgp router-id 10.0.0.1 (if no 32 bit
address on any interface)
```

- Router(config-router)# address-family ipv6
 Router(config-router-af)# no synchronization
 Router(config-router-af)#neighbor 2001:0df0:00aa::1
 remote-as 2 (EBGP)
 Router(config-router-af)#neighbor 2001:0df0:00aa::1
 activate
 Router(config-router-af)#network 2001:0df0:00aa::/48
- Verify BGP IPv6 configuration

Router#sh bgp ipv6 unicast summary (summarized neighbor list) Router#sh bgp ipv6 unicast (BGP database) Router#sh ipv6 route bgp (BGP routing table)

Required command to add IX prefix filter

- Create prefix filter in global mode Router(config)#ipv6 prefix-list AS1 seq 2 permit 2001:0df0:aa::/48
- Apply prefix filter in BGP router configuration mode
 Router(config-router)# address-family ipv6
 Router(config-router-af)#neighbor 2001:0df0:aa::1
 prefix-list AS1 in

Router(config-router-af)#neighbor 2001:0df0:aa::1
 prefix-list AS1 out

- Controlling routing update traffic (Not data traffic)
- Incoming routing update (Will control outgoing data traffic)
- Outgoing routing update (Will control incoming data traffic)

Questions?

APNIC

Thank you

APNIC

