
APNIC DNS/DNSSEC
Workshop

Contact: training@apnic.net

WDNS02_v1.0

DNS

•  A lookup mechanism for translating objects into
other objects

•  A globally distributed, loosely coherent, scalable,
reliable, dynamic database

•  Comprised of three components
–  A “name space”
–  Servers making that name space available
–  Resolvers (clients) which query the servers about the name space

DNS Features

•  Global distribution

•  Loose Coherency

•  Scalability

•  Reliability

•  Dynamicity

DNS Names - FQDNs

 whois

Root DNS

net com

whois

apnic

ftp www

iana

org

dots

ccTLDs

Domains

•  Domains are “namespaces”

•  Everything below .com is in the com domain

•  Everything below apnic.net is in the apnic.net domain and
in the net domain

Domains

net "
domain

com domain"

apnic.net "
domain

net com

apnic

www
www

edu

isi tislabs

•

training

ns1 ns2

•

• •

•

•

ftp

sun

moon

google

•

•

Delegation
•  Administrators can create subdomains to group hosts

–  According to geography, organizational affiliation or any other
criterion

•  An administrator of a domain can delegate responsibility
for managing a subdomain to someone else
–  But this isn’t required

•  The parent domain retains links to the delegated
subdomain
–  The parent domain “remembers” who it delegated the subdomain

to

Zones and Delegations

•  Zones are “administrative spaces”

•  Zone administrators are responsible for portion of a
domain’s name space

•  Authority is delegated from a parent and to a child

Zones and Delegations

net "
domain

apnic.net "
zone

net zone"

training.apnic.net "
zone"

net com

apnic

www www

edu

isi tislabs

• training

ns1 ns2

•

• •

•

•

•
ftp

sun

moon

google
•

Name Servers

•  Name servers answer ‘DNS’ questions

•  Several types of name servers
–  Authoritative servers

•  master (primary)
•  slave (secondary)

–  (Caching) recursive servers
•  also caching forwarders

–  Mixture of functionality

Concept: Resolving process & Cache

Resolver

Question: www.apnic.net A

www.apnic.net A ?

Caching
forwarder
(recursive)

root-server www.apnic.net A ?

Ask net server @ X.gtld-servers.net (+ glue)

gtld-server
www.apnic.net A ?

Ask apnic server @ ns.apnic.net (+ glue)

apnic-server

www.apnic.net A ?

192.168.5.10

192.168.5.10

Add to cache

Concept: Resource Records

•  Resource records consist of it’s name, it’s TTL, it’s
class, it’s type and it’s RDATA

•  TTL is a timing parameter
•  IN class is widest used
•  There are multiple types of RR records
•  Everything behind the type identifier is called rdata

Label" ttl"

class"
type" rdata"

www.apnic.net. 3600 IN A 10.10.10.2

Example: RRs in a zone file
apnic.net. 7200 IN SOA ns.apnic.net. admin.apnic.net.

 (

 2009012001 ; Serial

 12h ; Refresh 12 hours

 4h ; Retry 4 hours

 4d ; Expire 4 days

 2h ; Negative cache 2 hours)

apnic.net. 7200 IN NS ns.apnic.net.

apnic.net. 7200 IN NS ns.ripe.net.

whois.apnic.net. 3600 IN A 193.0.1.162
Label" ttl" class" type" rdata"

host25.apnic.net. 2600 IN A 193.0.3.25

Places where DNS data lives

•  Changes do not propagate instantly

Registry DB

Master

Slave server

Slave

Cache server

Not going to net if TTL>0

Might take up to ‘refresh’
to get data from master

Upload of zone
data is local
policy

To remember...

•  Multiple authoritative servers to distribute load and
risk:
– Put your name servers apart from each other

•  Caches to reduce load to authoritative servers and
reduce response times

•  SOA timers and TTL need to be tuned to needs of
zone. Stable data: higher numbers

Performance of DNS

•  Server hardware requirements
•  OS and the DNS server running
•  How many DNS servers?
•  How many zones expected to load?
•  How large the zones are?
•  Zone transfers
•  Where the DNS servers are located?
•  Bandwidth

Performance of DNS

•  Are these servers Multihomed?
•  How many interfaces are to be enabled for listening?
•  How many queries are expected to receive?
•  Recursion
•  Dynamic updates?
•  DNS notifications

Zone files

 apnic.net. 3600 IN SOA NS1.apnic.net. admin
\.email.apnic.net. (

 2002021301 ; serial
 1h ; refresh
 30M ; retry
 1W ; expiry
 3600) ; neg. answ. Ttl

apnic.net. 3600 IN NS NS1.apnic.net.
apnic.net. 3600 IN NS NS2.apnic.net.
apnic.net. 3600 IN MX 50 mail.apnic.net.
apnic.net. 3600 IN MX 150 mailhost2.apnic.net.

apnic.net. 3600 IN TXT “Demonstration and test zone”
NS1.apnic.net. 4500 IN A 203.0.0.4
NS2.apnic.net. 3600 IN A 193.0.0.202
localhost.apnic.net. 3600 IN A 127.0.0.1
www.apnic.net. 3600 IN CNAME IN.apnic.net.

Zone files

 apnic.net. 3600 IN SOA NS1.apnic.net. admin
\.email.apnic.net. (

 2002021301 ; serial
 1h ; refresh
 30M ; retry
 1W ; expiry
 3600) ; neg. answ. Ttl

 3600 IN NS NS1.apnic.net.
 3600 IN NS NS2.apnic.net.

 3600 IN MX 50 mail.apnic.net.
 3600 IN MX 150 mailhost2.apnic.net.

 3600 IN TXT “Demonstration and test zone”

NS1.apnic.net. 3600 IN A 203.0.0.4
NS2.apnic.net. 3600 IN A 193.0.0.202

localhost.apnic.net. 4500 IN A 127.0.0.1

www.apnic.net. 3600 IN CNAME IN.apnic.net.

Zone files

 $TTL 3600 ; Default TTL directive
apnic.net. IN SOA NS1.apnic.net. admin\.email.apnic.net. (

 2002021301 ; serial
 1h ; refresh
 30M ; retry
 1W ; expiry
 3600) ; neg. answ. Ttl

 IN NS NS1.apnic.net.
 IN NS NS2.apnic.net.

 IN MX 50 mail.apnic.net.
 IN MX 150 mailhost2.apnic.net.

 IN TXT “Demonstration and test zone”

NS1.apnic.net. IN A 203.0.0.4
NS2.apnic.net. IN A 193.0.0.202

localhost.apnic.net. 4500 IN A 127.0.0.1

www.apnic.net. IN CNAME NS1.apnic.net.

Zone files

 $TTL 3600 ; Default TTL directive
$ORIGIN apnic.net.
@ IN SOA NS1 admin\.email.apnic.net. (

 2002021301 ; serial
 1h ; refresh
 30M ; retry
 1W ; expiry
 3600) ; neg. answ. Ttl

 IN NS NS1
 IN NS NS2

 IN MX 50 mailhost
 IN MX 150 mailhost2

 IN TXT “Demonstration and test zone”
NS1 IN A 203.0.0.4
NS2 IN A 193.0.0.202

localhost 4500 IN A 127.0.0.1

www IN CNAME NS1

 $TTL 3600 ; Default TTL directive
$ORIGIN apnic.net.
@ SOA NS1 admin\.email.sanog.org. (

 2002021301 ; serial
 1h ; refresh
 30M ; retry
 1W ; expiry
 3600) ; neg. answ. Ttl

 NS NS1
 NS NS2

 MX 50 mailhost
 MX 150 mailhost2

 TXT “Demonstration and test zone”
NS1 A 203.0.0.4
NS2 A 193.0.0.202

localhost 4500 A 127.0.0.1
www CNAME NS1

Zone files

Delegating a zone (becoming a
parent)
•  Delegate authority for a sub domain to another party

(splitting of training.apnic.net from apnic.net)

 apnic.net "
 zone"

 training.apnic.net "
 zone"

net com

apnic

www
www

edu

isi tislabs

•

training

ns1 ns2

•

• •

•

•

•

ftp

sun

moon

google

•

Glue
•  Delegation is done by adding NS records:
training.apnic.net. NS ns1.training.apnic.net.
training.apnic.net. NS ns2.training.apnic.net.
training.apnic.net. NS ns1.apnic.net.
training.apnic.net. NS ns2.apnic.net.

•  How to get to ns1 and ns2… We need the
addresses

•  Add glue records to so that resolvers can
reach ns1 and ns2
ns1.training.apnic.net. A 10.0.0.1
ns2.training.apnic.net. A 10.0.0.2

Glue

•  Glue is ‘non-authoritative’ data

•  Don’t include glue for servers that are not in sub zones

Only this record needs glue"

training.apnic.net. NS ns1.training.apnic.net.
training.apnic.net. NS ns2.training.apnic.net.

training.apnic.net. NS ns2.apnic.net.
training.apnic.net. NS ns1.apnic.net.

ns1.training.apnic.net. A 10.0.0.1
Ns2.training.apnic.net. A 10.0.0.2

Delegating training.apnic.net. from
apnic.net.
 training.apnic.net

Setup minimum two servers

Create zone file with NS records

Add all training.apnic.net data

apnic.net

Add NS records and glue

Make sure there is no other data from
the training.apnic.net. zone in the zone
file

Questions ?

BIND

Retrieving BIND

•  HTTP, FTP
–  Internet Systems Consortium

•  http://www.isc.org

•  Other packages
–  OpenSSL

•  Will be needed for DNSSEC

BIND

•  Version 9
–  Current version (9.9.2)

•  Release
•  Release Candidate (Betas)
•  Snapshots (Alphas)

–  Never Use Snapshots on production servers

•  Getting BIND
–  http://www.isc.org/software/bind/992/download/bind-992targz

Unpacking BIND9

•  tar xvfz bind-9.9.2.tar.gz
–  Uncompresses and creates directory
–  bind-9.9.2

•  What's in there?
–  A lot of stuff (dig, libraries etc)
–  ./configure (script)
–  ./doc/arm/Bv9ARM.html

•  Administrator's Reference Manual
•  Good source!!!

Building BIND9

•  must be in the BIND 9.9.2 directory
>./configure –with-openssl

– Determine the appropriate includes and compiler settings

> make
– Build and compile

> make install
–  sudo (if not root)
–  Install BIND

What happens

•  Executables
–  /usr/local/sbin

•  dnssec-keygen, dnssec-makekeyset, dnssec-signkey, dnssec-
signzone

•  lwresd, named-checkconf, named-checkzone
•  rndc, rndc-confgen
•  named

–  /usr/local/bin
•  dig
•  host, isc-config.sh, nslookup
•  nsupdate

•  And libraries included

Testing

•  Make sure right version is now installed
> named –v

 > BIND 9.9.2

35

Bind DNSSEC Tools

•  Named
•  dnssec-keygen

– Generate keys of various types

•  dnssec-signzone
– Sign a zone

•  dig
–  Troubleshoot: Usage: dig +dnssec @…

•  named-checkzone & named-checkconf
–  syntax check for zonefiles and named.conf

36

Server/Named Configuration

•  The configuration file is called “named.conf”

•  Documentation in <src>/doc/arm/Bv9ARM.html

•  Turn on logging for troubleshooting
–  Several categories
–  Categories are processed in one or more channels
–  Channels specify where the output goes

Questions ?

Recursive Server

Overview

•  Recursive Service

•  Root server list

•  localhost

•  0.0.127.in-addr.arpa

•  named.conf

Recursive Server

•  Used to lookup data by applications
•  Needs to know how to reach top of DNS
•  Also should stop some queries

–  localhost, 127.0.0.1

•  Files
–  named.conf
–  root.hints
–  localhost zone
–  0.0.127.in-addr.arpa zone

Root server list

•  List of the 13 root server records

•  Where to get it
–  ftp rs.internic.net

•  anonymous login
•  cd domain
•  get one of these files (they are the same)

–  db.cache
–  named.root
–  named.cache

What it looks like
; This file holds the information on root name servers needed to!

; initialize cache of Internet domain name servers (e.g. reference this file in the
"cache . <file>"!

; configuration file of BIND domain name servers).!

; This file is made available by InterNIC under anonymous FTP as!

; file /domain/named.root on server FTP.INTERNIC.NET!

; -OR- RS.INTERNIC.NET!

; last update: Feb 04, 2008 related version of root zone: 2008020400!

; formerly NS.INTERNIC.NET!

. 3600000 IN NS A.ROOT-SERVERS.NET.!

A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4!

A.ROOT-SERVERS.NET. 3600000 AAAA 2001:503:BA3E::2:30!

; operated by WIDE!

. 3600000 NS M.ROOT-SERVERS.NET.!

M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33!

M.ROOT-SERVERS.NET. 3600000 AAAA 2001:dc3::35!

; End of File!

!

localhost

•  Loopback name in operating systems

•  Means 127.0.0.1

•  Queries for this shouldn't use recursion

•  So we will configure a file to define the localhost. zone
–  Note the "."

localhost file

$TTL 86400

@ IN SOA localhost. root.localhost. (

 1 ; serial

 1800 ; refresh

 900 ; retry

 69120 ; expire

 1080 ; negative cache ttl

)

 NS localhost.

 A 127.0.0.1

Reverse for localhost

•  Since we want "localhost -> 127.0.0.1" we want to have
"127.0.0.1 -> localhost"

•  We need a zone called 0.0.127.in-addr.arpa.

0.0.127.in-addr.arpa file
$TTL 86400
@ IN SOA localhost. root.localhost. (

 1 ; serial

 1800 ;refresh

 900 ;retry

 69120 ;expire
 1080 ;negative cache ttl

)

 NS localhost.

 1 PTR localhost.

!

Assembling the files
•  Here's my directory:

[/var/named/recursive] % ls!
0.0.127.in-addr.arpa localhost named.root!

•  The directory name and file names will be in named.conf

•  Now create a named.conf file in the same directory

named.conf
options {

 directory "/var/named/recursive";

 recursion yes; // by default recursion is on

};

zone "." {

 type hint;

 file "named.root";

};

zone "localhost." {

 type master;

 file "localhost";

};

zone "0.0.127.in-addr.arpa." {

 type master;

 file "0.0.127.in-addr.arpa";

};

Running the server

•  From the directory
% named -g -c named.conf

Testing the server
•  Just to show it is alive
% dig @127.0.0.1 www.arin.net!
; <<>> DiG 9.2.2rc1 <<>> @127.0.0.1 www.arin.net!

;; global options: printcmd!

;; Got answer:!

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16580!

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 10, ADDITIONAL: 0!

;; QUESTION SECTION:!

;www.arin.net. IN A!

;; ANSWER SECTION:!

www.arin.net. 10800 IN A 192.149.252.17!

www.arin.net. 10800 IN A 192.149.252.16!

;; AUTHORITY SECTION:!

arin.net. 10800 IN NS arrowroot.arin.net.!

(and so on)!

;; Query time: 3066 msec!

;; SERVER: 127.0.0.1#53(127.0.0.1)!

;; WHEN: Wed Feb 19 11:07:05 2003!

;; MSG SIZE rcvd: 251

Questions ?

Reverse DNS

Overview

•  Principles

•  Creating reverse zones

•  Setting up nameservers

•  Reverse delegation procedures

What is ‘Reverse DNS’?

•  ‘Forward DNS’ maps names to numbers
–  svc00.apnic.net -> 202.12.28.131

•  ‘Reverse DNS’ maps numbers to names
–  202.12.28.131 -> svc00.apnic.net

Reverse DNS - why bother?

•  Service denial
•  That only allow access when fully reverse delegated eg. anonymous ftp

•  Diagnostics
•  Assisting in trace routes etc

•  SPAM identifications

•  Registration responsibilities

 whois

Root DNS

Principles – DNS tree

net edu com sg

whois

apnic

arpa

22 .64 .in-addr .202 .arpa

- Mapping numbers to names - ‘reverse DNS’

202 203 210 211.. 202 RIR

64 64 ISP

22 22 Customer

in-addr

Creating reverse zones

•  Same as creating a forward zone file
–  SOA and initial NS records are the same as normal zone
–  Main difference

•  need to create additional PTR records

•  Can use BIND or other DNS software to create and
manage reverse zones
–  Details can be different

Creating reverse zones - contd

•  Files involved
–  Zone files

•  Forward zone file
–  e.g. db.domain.net

•  Reverse zone file
–  e.g. db.192.168.254

– Config files
•  <named.conf>

– Other
•  Hints files etc.

–  Root.hints

Start of Authority (SOA) record

<domain.name.> CLASS SOA <hostname.domain.name.>
<mailbox.domain.name> (

 <serial-number>
 <refresh>

 <retry>
 <expire>

 <negative-caching>)

253.253.192.in-addr.arpa.

Pointer (PTR) records

•  Create pointer (PTR) records for each IP address

 or

131.28.12.202.in-addr.arpa. IN PTR svc00.apnic.net.

 131 IN PTR svc00.apnic.net.

A reverse zone example

Note trailing dots"

 $ORIGIN 1.168.192.in-addr.arpa.
 @ 3600 IN SOA test.company.org. (
 sys\.admin.company.org.
 2002021301 ; serial
 1h ; refresh
 30M ; retry
 1W ; expiry
 3600) ; neg. answ. ttl

 NS ns.company.org.
 NS ns2.company.org.

 1 PTR gw.company.org.
 router.company.org.

 2 PTR ns.company.org.
 ;auto generate: 65 PTR host65.company.org
 $GENERATE 65-127 $ PTR host$.company.org.

Setting up the primary nameserver

•  Add an entry specifying the primary server to the
named.conf file

•  <domain-name>

–  Ex: 28.12.202.in-addr.arpa.

•  <type master>
–  Define the name server as the primary

•  <path-name>
–  location of the file that contains the zone records

zone "<domain-name>" in {
type master;
file "<path-name>"; };

Setting up the secondary nameserver

•  Add an entry specifying the primary server to the
named.conf file

•  <type slave> defines the name server as the secondary

•  <ip address> is the IP address of the primary name server
•  <domain-name> is same as before

•  <path-name> is where the back-up file is

zone "<domain-name>" in {
type slave;
file "<path-name>";
Masters { <IP address> ; }; };

Reverse delegation requirements

•  /24 Delegations
•  Address blocks should be assigned/allocated
•  At least two name servers

•  /16 Delegations
•  Same as /24 delegations
•  APNIC delegates entire zone to member
•  Recommend APNIC secondary zone

•  < /24 Delegations
•  Read “classless in-addr.arpa delegation”

RFC
2317

APNIC & ISPs responsibilities

•  APNIC
– Manage reverse delegations of address block distributed

by APNIC
– Process organisations requests for reverse delegations of

network allocations

•  Organisations
– Be familiar with APNIC procedures
– Ensure that addresses are reverse-mapped
– Maintain nameservers for allocations

•  Minimise pollution of DNS

Subdomains of in-addr.arpa domain

•  Example: an organisation given a /16
–  192.168.0.0/16 (one zone file and further delegations to

downstreams)
–  168.192.in-addr.arpa zone file should have:

0.168.192.in-addr.arpa. NS ns1.organisation0.com.
0.168.192.in-addr.arpa. NS ns2.organisation0.com.
1.168.192.in-addr.arpa. NS ns1.organisation1.com.
1.168.192.in-addr.arpa. NS ns2.organisation1.com.
2.168.192.in-addr.arpa. NS ns1.organisation2.com.
2.168.192.in-addr.arpa. NS ns2.organisation2.com.
 :

Subdomains of in-addr.arpa domain

•  Example: an organisation given a /20
–  192.168.0.0/20 (a lot of zone files!) – have to do it per /

24)
–  Zone files

0.168.192.in-addr.arpa.
1.168.192.in-addr.arpa.
2.168.192.in-addr.arpa.
:
:
15.168.192.in-addr.arpa.

Reverse delegation procedures

•  Standard APNIC database object,

–  can be updated through myAPNIC.

•  Nameserver/domain set up verified before being submitted
to the database.

•  Protection by maintainer object
–  (current auths: CRYPT-PW, PGP)

•  Any queries
–  Contact <helpdesk@apnic.net>

Whois domain object

domain: 28.12.202.in-addr.arpa
descr: in-addr.arpa zone for 28.12.202.in-addr.arpa
admin-c: DNS3-AP
tech-c: DNS3-AP
zone-c: DNS3-AP
nserver: ns.telstra.net
nserver: rs.arin.net
nserver: ns.myapnic.net
nserver: svc00.apnic.net
nserver: ns.apnic.net
mnt-by: MAINT-APNIC-AP
mnt-lower: MAINT-DNS-AP
changed: inaddr@apnic.net 19990810
source: APNIC

Reverse Zone

Contacts

Name
Servers

Maintainers
(protection)

Removing lame delegations

•  Objective
–  To repair or remove persistently lame DNS delegations

•  DNS delegations are lame if:
–  Some or all of the registered DNS nameservers are unreachable or

badly configured

•  APNIC has formal implementation of the lame DNS reverse
delegation procedures

Questions ?

DNS and IPv6

IPv6 Representation in the DNS

•  Forward lookup support: Multiple RR records for name to
number
–  AAAA (Similar to A RR for IPv4)

•  Reverse lookup support:
–  Reverse nibble format for zone ip6.arpa

•  Multiple addresses are possible for any given name
–  Ex: in a multi-homed situation

•  Can assign A records and AAAA records to a given name/
domain

•  Can also assign separate domains for IPv6 and IPv4

Sample Forward Lookup File
apnic.net. 7200 IN SOA ns.apnic.net. admin.apnic.net.

 (

 2010020901 ; Serial

 12h ; Refresh 12 hours

 4h ; Retry 4 hours

 4d ; Expire 4 days

 2h ; Negative cache 2 hours)

apnic.net. 7200 IN NS
ns.apnic.net.

server1.apnic.net. 3600 IN A 193.0.1.162

 3600 IN AAAA
2001:0db8:1230::ABC:1

IPv6 Reverse Lookups – PTR records

•  Similar to the IPv4 reverse record
b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.ip6.arpa.

 IN PTR test.ip6.example.com.

•  Example: reverse name lookup for a host with address

 3ffe:8050:201:1860:42::1
$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.arpa.

1.0.0.0.0.0.0.0.0.0.0.0.2.4.0.0 14400 IN PTR host.example.com.

Sample Reverse Lookup File
$ORIGIN 0.0.0.0.4.3.2.1.8.B.D.0.1.0.0.2

apnic.net. 7200 IN SOA ns.apnic.net. admin.apnic.net.
 (

 2010020901 ; Serial

 12h ; Refresh 12 hours

 4h ; Retry 4 hours

 4d ; Expire 4 days

 2h ; Negative cache 2 hours)

apnic.net. 7200 IN NS ns.apnic.net.

1.C.B.A.0.0.0.0.0.0.0.0.0.0.0.0 3600 IN PTR server1.apnic.net.

IPv6 in the Root Servers

•  http://www.internic.net/zones/named.root

•  9 of 13 root servers have IPv6 AAAA records
–  C, E, G root servers don’t have IPv6 capability yet
–  root.hints file contains the IP address of the root servers

IPv6 in TLDs

•  Total number of TLDs: 313

•  TLDs with IPv6: 266

•  Registered domains with AAAA records
–  COM: 760,678 of 101,872,424 domains
–  NET: 170,062 of 14,624,650 domains

Source: Global IPv6 Deployment Progress Report
http://bgp.he.net/ipv6-progress-report.cgi

Using BIND with IPv6

•  BIND options for IPv6
–  Listen-on-v6 { };
–  Query-source-v6 { };
–  Use-v6-udp-ports or avoid-v6-udp-ports
–  Transfer-source-v6

•  AAAA records
•  PTR records

–  In named.conf
Zone “1.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa” {

Type master;
File “ipv6ptr.zone”;

};

–  In zone file
4.3.2.1.0.0.0.1.0.0.0.0. IN PTR www.example.com

Questions?

Transaction Signatures
(TSIG)

What is TSIG - Transaction Signature?

•  A mechanism for protecting a message from a primary to
secondary and vice versa

•  A keyed-hash is applied (like a digital signature) so recipient
can verify message
–  DNS question or answer
–  & the timestamp

•  Based on a shared secret - both sender and receiver are
configured with it

What is TSIG - Transaction Signature?

•  TSIG (RFC 2845)
–  authorizing dynamic updates & zone transfers
–  authentication of caching forwarders

•  Used in server configuration, not in zone file

84

SOA "
…"
SOA"

Sig ...!

Master"

AXFR"

TSIG example

Slave"
KEY:  
%sgs!f23fv!

KEY:  
%sgs!f23fv!

AXFR"

Sig ...!Sig ...!

SOA "
…"
SOA"

Sig ...!

Slave"
KEY:  
%sgs!f23fv!

verification"

verification"

Query: AXFR"

Response: Zone"

85

TSIG steps

1.  Generate secret

2.  Communicate secret

3.  Configure servers

4.  Test

TSIG - Names and Secrets

•  TSIG name
–  A name is given to the key, the name is what is transmitted in the

message (so receiver knows what key the sender used)

•  TSIG secret value
–  A value determined during key generation
–  Usually seen in Base64 encoding

TSIG – Generating a Secret

•  dnssec-keygen
–  Simple tool to generate keys
–  Used here to generate TSIG keys

> dnssec-keygen -a <algorithm> -b <bits> -n host
<name of the key>!

TSIG – Generating a Secret

•  Example!

> dnssec-keygen –a HMAC-MD5 –b 128 –n HOST ns1-
ns2.pcx.net

This will generate the key
> Kns1-ns2.pcx.net.+157+15921

>ls
Ø Kns1-ns2.pcx.net.+157+15921.key
Ø Kns1-ns2.pcx.net.+157+15921.private

TSIG – Generating a Secret

•  TSIG should never be put in zone files!!!
–  might be confusing because it looks like RR:

ns1-ns2.pcx.net. IN KEY 128 3 157 nEfRX9…bbPn7lyQtE=!

TSIG – Configuring Servers

•  Configuring the key
–  in named.conf file, same syntax as for rndc
–  key { algorithm ...; secret ...;}

•  Making use of the key
–  in named.conf file
–  server x { key ...; }!
–  where 'x' is an IP number of the other server

Configuration Example – named.conf
Primary server 10.33.40.46!
!
key ns1-ns2.pcx. net {!

!algorithm hmac-md5;!
!secret "APlaceToBe";!

};!
server 10.33.50.35 {!

!keys {ns1-ns2.pcx.net;};!
};!
zone "my.zone.test." {!

!type master;!
!file “db.myzone”;!
!allow-transfer {!
!key ns1-ns2..pcx.net ;};!

};!

Secondary server 10.33.50.35	

!
key ns1-ns2.pcx.net {!

!algorithm hmac-md5;!
!secret "APlaceToBe";!

};!
server 10.33.40.46 {!
 keys {ns1-ns2.pcx.net;};!
};!
zone "my.zone.test." {!

!type slave;!
!file “myzone.backup”;!
!masters {10.33.40.46;};!

};!

You can save this in a file and refer to it in the named.conf
using ‘include’ statement:
include “/var/named/master/tsig-key-ns1-ns2”;

92

TSIG Testing : dig
•  You can use dig to check TSIG configuration

–  dig @<server> <zone> AXFR -k <TSIG keyfile>!

$ dig @127.0.0.1 example.net AXFR \!
 -k Kns1-ns2.pcx.net.+157+15921.key!

•  Wrong key will give “Transfer failed” and on the server
the security-category will log this.

TSIG Testing - TIME!

•  TSIG is time sensitive - to stop replays
–  Message protection expires in 5 minutes
–  Make sure time is synchronized
–  For testing, set the time
–  In operations, (secure) NTP is needed

Questions?

DNS Security :
DNSSEC Deployment

Overview

•  Introduction
–  DNSSEC support in BIND
–  Why DNSSEC?

•  DNSSEC mechanisms
–  To authenticate servers (TSIG)
–  To establish authenticity and integrity of data

•  Quick overview
•  New RRs
•  Using public key cryptography to sign a single zone
•  Delegating signing authority ; building chains of trust
•  Key exchange and rollovers

•  Steps

Background

•  The original DNS protocol wasn’t designed with security in
mind

•  It has very few built-in security mechanism

•  As the Internet grew wilder & wollier, IETF realized this
would be a problem
–  For example DNS spoofing was to easy

•  DNSSEC and TSIG were develop to help address this
problem

98

DNS Protocol Vulnerability

•  DNS data can be spoofed and corrupted between master
server and resolver or forwarder

•  The DNS protocol does not allow you to check the validity
of DNS data
–  Exploited by bugs in resolver implementation (predictable

transaction ID)
–  Polluted caching forwarders can cause harm for quite some time

(TTL)
–  Corrupted DNS data might end up in caches and stay there for a

long time

•  How does a slave (secondary) knows it is talking to the
proper master (primary)?

Why DNSSEC?

•  DNS is not secure
–  Applications depend on DNS

•  Known vulnerabilities

•  DNSSEC protects against data spoofing and corruption

Reminder: DNS Resolving

Resolver

Question:

www.apnic.net A

www.apnic.net A ?

Caching
forwarder
(recursive)

www.apnic.net A ?

“go ask net server @ X.gtld-servers.net”
 (+ glue)

gtld-server
www.apnic.net A ?

“go ask ripe server @ ns.apnic.net”
 (+ glue)

apnic-server

www.apnic.net A ?

“192.168.5.10”

192.168.5.10

1" 2"

3"

4"

5"

6"

7"

Add to cache
9"

8"

10" TTL

root-server

DNS: Data Flow

master Caching forwarder

Zone administrator

Zone file

Dynamic
updates

1"

2"

slaves

3"

4"

5"

resolver

DNS Vulnerabilities

master Caching forwarder

Zone administrator

Zone file

Dynamic
updates

1"

2"

slaves

3"

4"

5"

resolver

Server protection! Data protection!

Corrupting data" Impersonating master"

Unauthorized updates"

Cache impersonation"

Cache pollution by"
Data spoofing"

TSIG Protected Vulnerabilities

master Caching forwarder

Zone administrator

Zone file

Dynamic
updates

slaves
resolver

Impersonating master"

Unauthorized updates"

Vulnerabilities protected by
DNSKEY / RRSIG / NSEC

master Caching forwarder

Zone administrator

Zone file

Dynamic
updates

slaves
resolver

Cache impersonation"

Cache pollution by"
Data spoofing"

105

DNSSEC mechanisms
•  TSIG: provides mechanisms to authenticate

communication between servers

•  DNSKEY/RRSIG/NSEC: provides mechanisms to
establish authenticity and integrity of data

•  DS: provides a mechanism to delegate trust to public keys
of third parties

•  A secure DNS will be used as an infrastructure with public
keys
–  However it is NOT a PKI

Vulnerabilities protected by
DNSKEY / RRSIG / NSEC

master Caching forwarder

Zone administrator

Zone file

Dynamic
updates

slaves
resolver

Cache impersonation"

Cache pollution by"
Data spoofing"

107

DNSSEC RRs
•  Data authenticity and integrity by signing the Resource

Records Sets with private key

•  Public DNSKEYs used to verify the RRSIGs

•  Children sign their zones with their private key
–  Authenticity of that key established by signature/checksum by the

parent (DS)

•  Ideal case: one public DNSKEY distributed

108

New Resource Records
•  3 Public key crypto related RRs

– RRSIG
•  Signature over RRset made using private key

– DNSKEY
•  Public key, needed for verifying a RRSIG

– DS
•  Delegation Signer; ‘Pointer’ for building chains of authentication

•  One RR for internal consistency
– NSEC

•  Indicates which name is the next one in the zone and which
typecodes are available for the current name

•  authenticated non-existence of data

109

RR’s and RRsets
•  Resource Record:

–  Name TTL class type rdata
www.example.net. 7200 IN A 192.168.1.1

•  RRset: RRs with same name, class and type:
www.example.net. 7200 IN A 192.168.1.1
 A 10.0.0.3
 A 172.10.1.1

•  RRsets are signed, not the individual RRs

DNSKEY RDATA

Example:!

example.net. 3600 IN DNSKEY !256 3 5 (!

! ! !AQOvhvXXU61Pr8sCwELcqqq1g4JJ!

! ! !CALG4C9EtraBKVd+vGIF/unwigfLOA!

! ! !O3nHp/cgGrG6gJYe8OWKYNgq3kDChN)!

RRSIG RDATA

example.net. 3600 IN RRSIG A 5 2 3600 (!

!20081104144523 20081004144523 3112 example.net. VJ
+8ijXvbrTLeoAiEk/qMrdudRnYZM1VlqhNvhYuAcYKe2X/
jqYfMfjfSUrmhPo+0/GOZjW66DJubZPmNSYXw==)!

112

Delegation Signer (DS)

•  Delegation Signer (DS) RR indicates that:
–  delegated zone is digitally signed
–  indicated key is used for the delegated zone

•  Parent is authorative for the DS of the childs zone
– Not for the NS record delegating the childs zone!
– DS should not be in the childs zone

113

DS RDATA

$ORIGIN .net.

example.net. 3600 IN NS ns.example.net

ns.example.net. 3600 IN DS 3112 5 1 (
 239af98b923c023371b52

 1g23b92da12f42162b1a9

)

114

NSEC RDATA

•  Points to the next domain name in the zone
–  also lists what are all the existing RRs for “name”
– NSEC record for last name “wraps around” to first name

in zone

•  Used for authenticated denial-of-existence of data
–  authenticated non-existence of TYPEs and labels

NSEC Record example
$ORIGIN example.net.!

@!SOA …!

! !NS !NS.example.net.!

! !DNSKEY!…!

! !NSEC mailbox.example.net. SOA NS NSEC DNSKEY !RRSIG!

!

mailbox !A !192.168.10.2!!

! ! ! !NSEC www.example.net. A NSEC RRSIG!

 WWW ! !A !192.168.10.3!!

! ! ! !TXT !Public webserver!

! ! ! !NSEC example.net. A NSEC RRSIG TXT!

116

Setting up a secure
zone

Enable dnssec

•  In the named.conf,

 Options {
 directory “….”
 dnssec-enable yes;
 dnssec-validation yes;
 };

Creation of keys

•  Zones are digitally signed using the private key

•  Can use RSA-SHA-1, DSA-SHA-1 and RSA-MD5 digital
signatures

•  The public key corresponding to the private key used to
sign the zone is published using a DNSKEY RR

Keys

•  Two types of keys
–  Zone Signing Key (ZSK)

•  Sign the RRsets within the zone
•  Public key of ZSK is defined by a DNSKEY RR

– Key Signing Key (KSK)
•  Signed the keys which includes ZSK and KSK and may also be

used outside the zone
–  Trusted anchor in a security aware server
–  Part of the chain of trust by a parent name server

– Using a single key or both keys is an operational choice
(RFC allows both methods)

Creating key pairs
•  To create ZSK

> dnssec-keygen -a rsasha1 -b 1024 -n zone champika.net

•  To create KSK
> dnssec-keygen -a rsasha1 -b 1400 -f KSK -n zone champika.net

Publishing your public key

•  Using $INCLUDE you can call the public key (DNSKEY RR)
inside the zone file
–  $INCLUDE /path/Kchampika.net.+005+33633.key ; ZSK

–  $INCLUDE /path/Kchampika.net.+005+00478.key ; KSK

•  You can also manually enter the DNSKEY RR in the zone
file

Signing the zone

> dnssec-signzone –o champika.net -t -k
Kchampika.net.+005+00478 db.champika.net
Kchampika.net.+005+33633

•  Once you sign the zone a file with a .signed
extension will be created
- db.champika.net.signed

Testing the server

•  Ask a dnssec enabled question from the server and see
whether the answer contains dnssec-enabled data
–  Basically the answers are signed

> dig @localhost www.champika.net +dnssec +multiline

Testing with dig: an example

Questions?
Thank You

