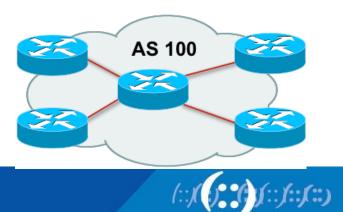
BGP Techniques

APNIC

Basic BGP Operation

APNIC

What is Border Gateway Protocol?


- BGP:
 - A path vector routing protocol to exchange routing information between different Autonomous System (AS)
 - ASes are the building block of BGP operational unites
 - AS is a collection of routers with a common routing policy
 - Specification is defined in RFC4271

What is an Autonomous System (AS)

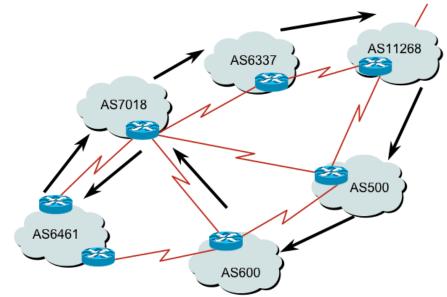
- An AS is a collection of networks with same routing policy
- Usually under a single administrative control unit
- A public AS is identified by a unique number called AS number
- Around 32000 ASes are visible on the Internet now

BGP features

- Path Vector Routing Protocol
- Send incremental updates to peers
- Runs over TCP –Port 179
- Select path based on routing policy/ organization's business requirement
- Support Classless Inter Domain Routing (CIDR) concept
- Widely used in today's Internet Backbone
- Current BGP version is MP-BGP

What is Path Vector Routing Protocol

- A path vector routing protocol is used to span different autonomous systems
- It defines a route as a collection of a number of AS that it passes through from source AS to destination AS
- This list of ASes are called AS path and used to avoid routing loop
- AS path is also used to select path to destination



What is AS path?

• An AS path example:

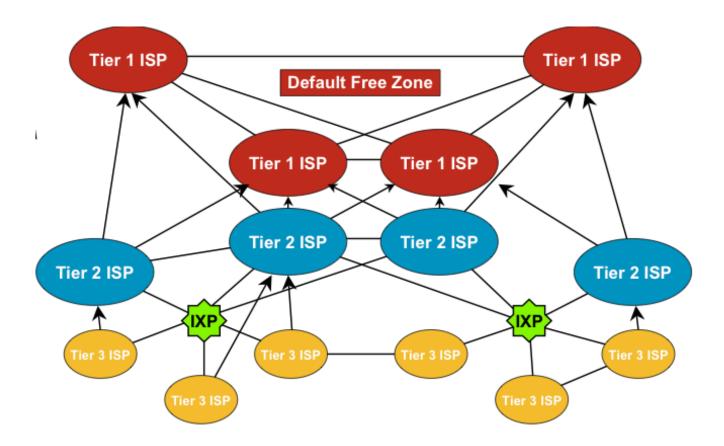
APNIC

12.6.126.0/24 207.126.96.43 1021 0 6461 7018 6337 11268 i

BGP Traffic Arrangement Definition

- Transit
 - Forwarding traffic through the network usually for a fee
 - I.e Internet service from upstream ISP
- Peering
 - Exchanging traffic without any fee
 - I.e Connection in an IXP
- Default
 - Where to send traffic if there no explicit route match in the routing table

What is Default Free Zone?

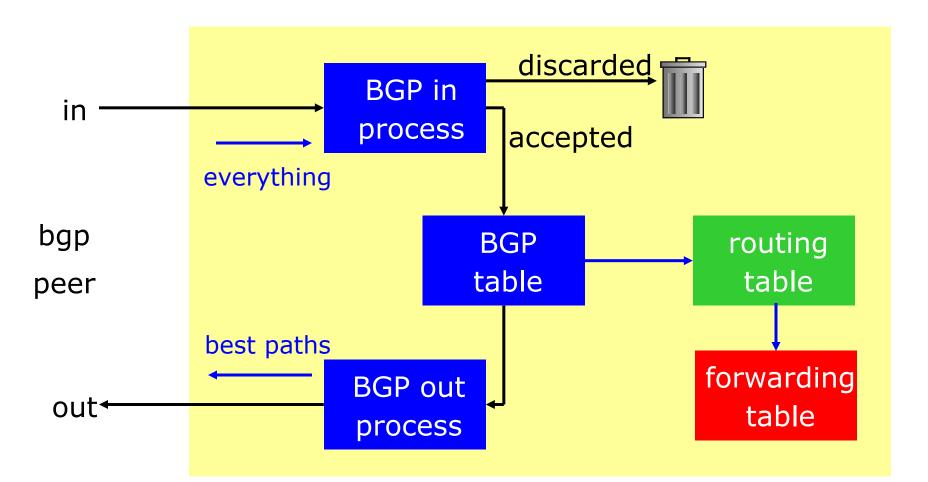

- Default free zone is made up of Tire One ISP routers which have explicit routing information about every part of the Global Internet
- So there is no need of default route
- If there is no destination network match, then that prefix is still not announced/ used by any ISP yet

ISP Hireracial Connection

• Connectivity Diagram:

BGP General Operation

- BGP maintain 3 database i.e Neighbor Table, BGP Table and Forwarding Table
- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs them on the forwarding tables
- Best path is sent to external BGP neighbors
- Policies are applied by influencing the best path selection


Constructing the Forwarding Table

- BGP "In" process
 - Receives path information from peers
 - Results of BGP path selection placed in the BGP table "best path" flagged
- BGP "Out" process
 - Announce "best path" information to peers
- Best path installed in forwarding table if:
 - Prefix and prefix length are equal
 - Lowest protocol distance

Constructing the Forwarding Table

BGP Terminology

- Neighbor
 - Any two routers that have formed a TCP connection to exchange BGP routing information are called peers or neighbors
- iBGP
 - iBGP refers to the BGP neighbor relationship within the same AS.
 - The neighbors do not have to be directly connected.
- eBGP
 - When BGP neighbor relationship are formed between two peers belongs to different AS are called eBGP.
 - EBGP neighbors by default need to be directly connected.

Building Neighbor Relationship

- After adding BGP neighbor:
 - Both router establish a TCP connection and send open message
 - If open message is accepted then both send keepalive message to each other to confirm open message
 - After both confirm open message by sending keepalive message they establish BGP neighbor relationship and exchange routing information

BGP message type

- Open Message
 - To establish BGP neighbor relationship
- Keepalive message
 - Only contain message header to maintain neighbor relationship. Sent every periodic interval
- Update message
 - Contain path information. One update message contain one path information. Multiple path need multiple update message to be sent
- Notification message
 - Sent when an error condition occur and BGP connection closed immediately

BGP Open message

- Open message contain:
 - BGP Version number
 - AS number of the local router
 - BGP holdtime in second to elapse between the successive keepalive message
 - BGP router ID which is a 32 bit number. Usually an IPv4 address is used as router ID
 - Optional parameters i.e types, length and value encoded. An example optional parameter is session authentication info

BGP Keepalive Message

- Send between BGP peers after every periodic interval (60 Sec)
- It refresh hold timer from expiration (180sec)
- A keepalive message contain only the message header

BGP Update Message

- An update message contain:
 - Withdrawn routes: a list contain address prefix that are withdrawn from service
 - Path attributes: includes AS path, origin code, local pref etc
 - Network-layer reachablity information: includes a list of address prefix reachable by this path

BGP Notification message

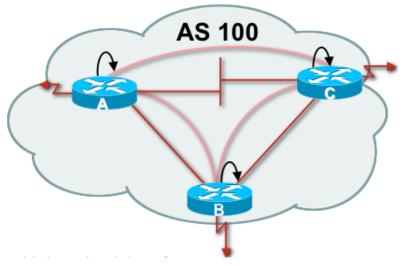
- Only sent when an error condition occur and detected in a network and BGP connection is closed immediately
- Notification message contain an error code, an error subcode, and data that are related to that error

BGP Neighbor Relationship States

- BGP neighbor goes through following steps:
 - Idle: Router is searching its routing table to reach the neighbor
 - Connect: Router found route and completed TCP three-way handshake
 - Open Sent: Open message sent with the parameter for BGP session
 - Open Confirm: Router receive agreement on the parameter to establish BGP session
 - Established: Peering is established and routing information exchange began

Troubleshoot BGP Neighbor Relation

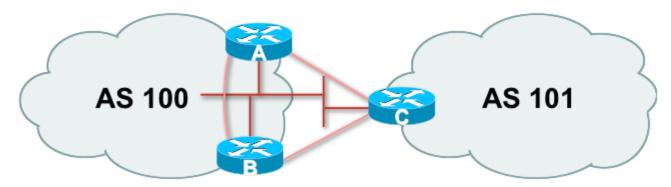
- Idle:
 - The router can not find address of the neighbor in its routing table
- Active:
 - Router found address of the neighbor in its routing table sent open message and waiting for the response from the neighbor
- Cycle between Active/Idle
 - Neighbor might peer with wrong address
 - Does not have neighbor statement on the other side
 - BGP open message source IP address does not match with remote side neighbor statement or no route to source IP address


iBGP Peering

- BGP peer within the same AS
- Not required to be directly connected
- iBGP peering require full mesh peering
 - Within an AS all iBGP speaker must peer with other iBGP speaker
 - They originate connected network
 - Pass on prefixes learned from outside AS
 - They do not forward prefixes learned from other iBGP peer

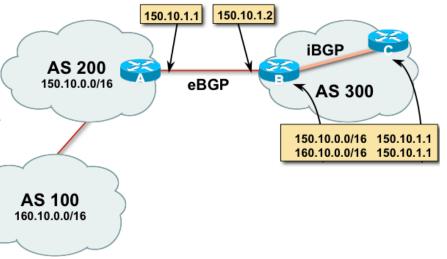
iBGP Peering with Loopback Interface

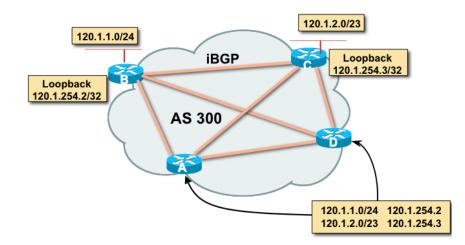
- If iBGP speakers has multiple connection then it is advisable to peer with loopback
- Connected network can go down which might loose iBGP peering
- Loopback interface will never go down


iBGP Neighbor Update Source

- This command allows the BGP process to use the IP address of a specified interface as the source IP address of all BGP updates to that neighbor
- A loopback interface is usually used as it will never goes down as long as the router is operational
- All BGP message will use the referenced interface as source of the messages

eBGP Peering


- Peering with BGP speaker in different AS
- Peers should be directly connected and share same WAN link
- eBGP neighbors are usually routed through connected network


BGP Next Hop Behavior

- BGP is an AS-by-AS routing protocol not a router-by router routing protocol.
- In BGP, the next hop does not mean the next router it means the IP address to reach the next AS
 - I.e Router A advertise
 150.10.0.0/16 and 160.10.0.0/16 to router B in eBGP with next hop
 150.10.1.1
 - Router B will update Router C in iBGP keeping the next hop unchanged

iBGP Next Hop

- Next hop is iBGP router loopback address
- Recursive route look-up
- Loopback address need to announce through IGP (OSPF)

BGP Synchronous Rule

- BGP do not use or advertise any route to an external neighbor learned by iBGP until a matching route has been learned from an IGP i.e OSPF or static
- It ensure consistency of information throughout the AS
- Avoid black hole route within an AS
- It is safe to turn off if all routers with in the AS run full-mesh iBGP
- Advisable to disable this feature (BCP)

Questions?

APNIC

BGP Attributes and Path Selection Process

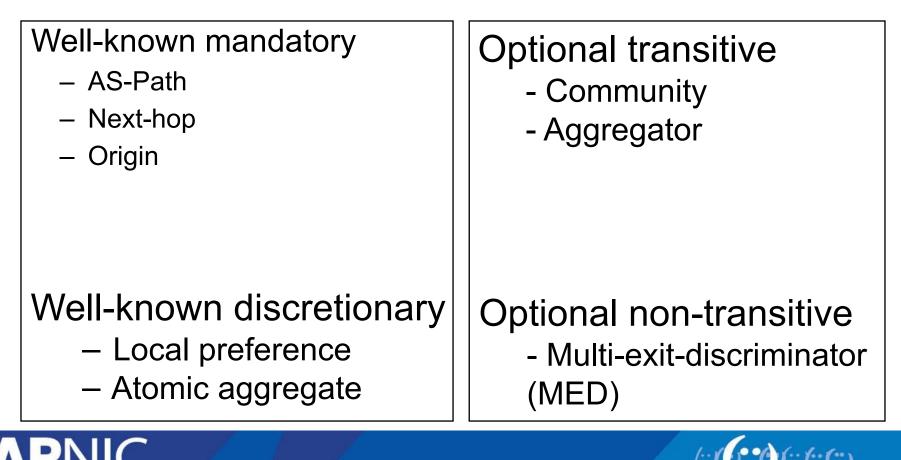
APNIC

Overview

Routing II Workshop (3 Days)

- Introduction to IP Routing
- Routing Protocol Basic
- IPv6 Address Structure
- Routing Lab Topology Overview
- Operation of OSPF Routing Protocol
- Lab Exercise on Basic Router and OSPF Dynamic Routing Configuration
- Basic BGP Operation

– BGP Attributes and Path Selection Process


- BGP Scaling Techniques
- Lab Exercise on iBGP, eBGP, RR, Peer group, BGP TE tools i.e.
 Local Pref, MED, Community, AS Path Prepend etc

BGP Attributes

BGP metrics are called path attributes. Here is the classifications BGP attributes:

Well-Known Attributes

- Must be recognized by all compliant BGP implementations
- Are propagated to other neighbors

Well-Known Mandatory Attributes

- Must be present in all update messages
- AS Path
- Next-hop
- Origin

Well-Known Discretionary Attributes

- May be present in update messages
- Local preference
- Atomic aggregate

Optional Attributes

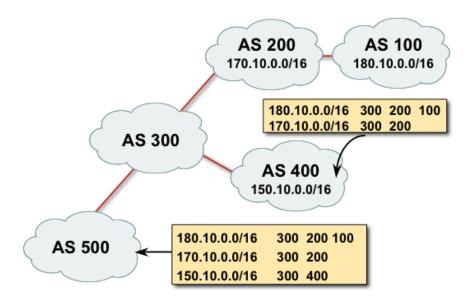
- Recognized by some implementations (could be private) expected not to be recognized by everyone
- Recognized optional attributes are propagated to other neighbors based on their meaning

Optional Transitive Attributes

- If not recognized, are marked as partial and propagated to other neighbors

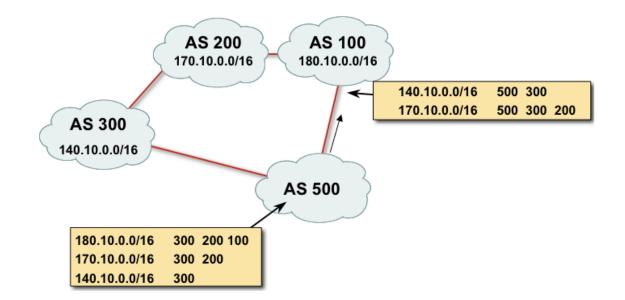
- Community

- Aggregator


Optional Non Transitive attributes

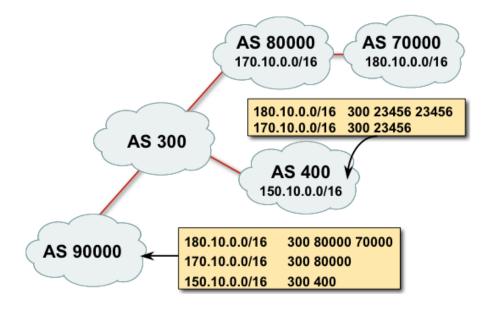
- Discarded if not recognized
- Multi Exit Discriminator (MED)

AS Path Attribute



- Sequence of ASes a route has traversed
- Used for
 - Loop detection
 - Path metrics where the length of the AS Path is used as in path selection

AS Path Loop Detection



- 180.10.0/16 is not accepted by AS100 as the prefix has AS100 in its AS-PATH
- This is loop detection in action

AS Path Attribute (2 byte and 4 byte)

- Internet with 16-bit and 32-bit ASNs
 - 32-bit ASNs are 65536 and above
 - AS-PATH length maintained

AS Path and AS4 Path Example

Router5:

 Network
 Next Hop
 Metric
 LocPrf
 Weight
 Path

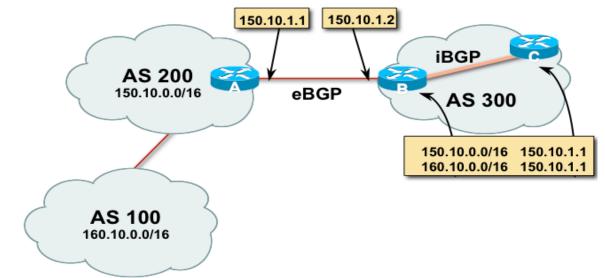
 *> 2001::/32
 2406:6400:F:41::1
 1

0 23456 38610 6939 I

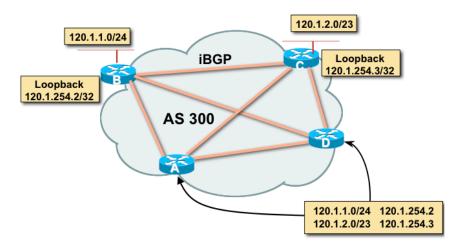
* i 2406:6400:D::5 0 100 0 45192 4608 4826 6939 i

*> 2001:200::/32 2406:6400:F:41::1

0 23456 38610 6939 2500 i


2406:6400:D::5 0 100 0 45192 4608 4826 6939 2500 i

* i


eBGP Next Hop

- The IP address to reach the next AS
 - Router A advertise 150.10.0.0/16 and 160.10.0.0/16 to router
 - B in eBGP with next hop 150.10.1.1 (Change it to own IP)
 - Router B will update Router C in iBGP keeping the next hop unchanged
- Well known mandatory attribute

iBGP Next Hop

- Next hop is iBGP router loopback address
- Recursive route look-up
- Loopback address need to announce through IGP (OSPF)
- iBGP send update next-hop unchanged

Next Hop Best Practice

- IOS default is for external next-hop to be propagated unchanged to iBGP peers
 - This means that IGP has to carry external next-hops
 - Forgetting means external network is invisible
 - With many eBGP peers, it is unnecessary extra load on IGP
- ISP Best Practice is to change external next-hop to be that of the local router
 - neighbor x.x.x.x next-hop-self

Next Hop Self Configuration

- Next hop default behavior can be changed by using nexthop-self command
- Forces all updates for this neighbor to be advertised with this router as the next hop
- The IP address used for next-hop-self will be the same as the source IP address of the BGP packet

BGP Origin Attribute

- The origin attribute informs all autonomous systems how the prefix introduced into BGP
- Well known mandatory attribute
- Three values: IGP, EGP, incomplete
 - IGP generated by BGP network statement
 - EGP generated by EGP
 - Incomplete redistributed from another routing protocol

BGP Origin Attribute Example

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,

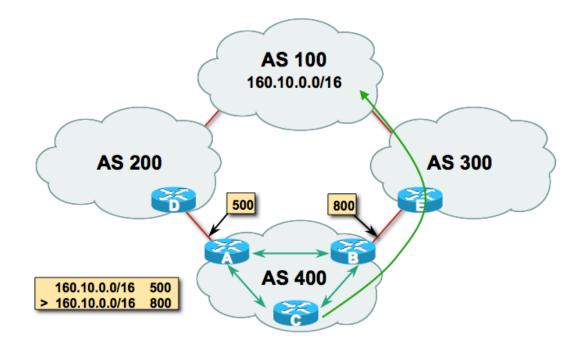
r RIB-failure, S Stale

Origin codes: i - IGP, e - EGP, ? - incomplete

 Network
 Next Hop
 Metric LocPrf Weight
 Path

 *> 2001::/32
 2406:6400:F:41::1 0 23456 38610 6939 i

 * i
 2406:6400:D::5 0 100 0 45192 4608 4826 6939 i


BGP Local Preference Attribute

- Local preference is used to advertise to IBGP neighbors only about how to leave their AS (Outbound Traffic).
- Paths with highest preference value are most desirable
- Local preference attribute is well-known and discretionary and is passed only within the AS
- Cisco Default Local Pref is 100

BGP Local Preference Attribute

- For destination 160.10.0/16 Router A advertise local pref 500 and Router B advertise local pref 800 in iBGP
- 800 will win best path (Router B)

BGP Local Pref Attribute Example

Network Next Hop Metric LocPrf Weight Path *> 2001::/32 2406:6400:F:41::1

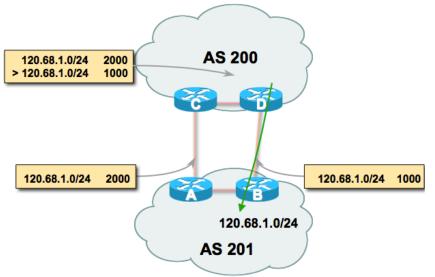
0 23456 38610 6939 i

* i 2406:6400:D::5 0 100 0 45192 4608 4826 6939 i

*> 2001:200::/32 2406:6400:F:41::1

0 23456 38610 6939 2500 i

* i 2406:6400:D::5 0 100 0 45192 4608 4826 6939 2500 i


BGP MED Attribute

- MED is used to advertise to EBGP neighbors about how to exit their AS to reach networks owned by this AS (Incoming traffic).
- MED is sent to EBGP neighbors only.
- The paths with the lowest MED value are the most desirable
- The MED attribute is optional and non transitive

BGP MED Attribute

- For prefix 120.68.1.0/24 Router B send MED 1000 and router A send MED 2000 to eBGP neighbor
- Incoming traffic from AS200 will choose Router B since lowest MED will win

BGP MED Example

Network Next Hop Metric LocPrf Weight Path

*> 2001::/32 2406:6400:F:41::1

0 23456 38610 6939 i

* i 2406:6400:D::5 0 100 0 45192 4608 4826 6939 i

*> 2001:200::/32 2406:6400:F:41::1

0 23456 38610 6939 2500 i

* i 2406:6400:D::5 0 100 0 45192 4608 4826 6939 2500 i

BGP Community Attribute

- Community is a tagging technique to mark a set of routes
- Upstream service provider routers can then use these flags to apply specific routing polices (i.e local preference etc) within their network
- Represented as two 16 bit integers (RFC1998)
- Common format is <local-ASN>:xx
- I.e 0:0 to 0:65535 and 65535:0 to 65535:65535 are reserved
- Very useful in applying policies within and between ASes
- Optional & transitive attribute

BGP Route Selection Process

- Step 1: Prefer highest weight (local to router)
- Step 2: Prefer highest local preference (global within AS)
- Step 3: Prefer route originated by the local router
- Step 4: Prefer shortest AS path
- Step 5: Prefer lowest origin code (IGP < EGP < incomplete)
- Step 6: Prefer lowest MED (from other AS)
- Step 7: Prefer EBGP path over IBGP path
- Step 8: Prefer the path through the closest IGP neighbor
- Step 9: Prefer oldest route for EBGP paths
- Step 10: Prefer the path with the lowest neighbor BGP router ID

Questions?

APNIC

Thank you

