## Internet Fundamentals

Contact: training@apnic.net



TIRM03\_v1.0



### **Overview**

- History of the Internet
- Internet Operations Fundamentals
- Introduction to APNIC
- Managing Internet Resources
- Policy Development Process
- IP Addressing Basics
- IP Routing Basics
- DNS and Reverse DNS





## **History of the Internet**

### APNIC



### In the beginning...

• 1968 - DARPA

APN

(Defense Advanced Research Projects Agency) contracts with BBN to create ARPAnet



THE ARPA NETWORK

DEC 1969



4 NODES

### The Internet is born...

- 1970 Five nodes:
  - UCLA Stanford UC Santa Barbara U of Utah BBN
- 1971 15 nodes, 23 hosts connected



- 1974 TCP specification by Vint Cerf & Bob Kahn
- 1983 TCP/IP
  - On January 1, the Internet with its 1000 hosts converts en masse to using TCP/IP for its messaging





### **Pre 1992**





### **Address Architecture - History**

- Initially, only 256 networks in the Internet!
- Then, network "classes" introduced:
  - Class A (128 networks x 16M hosts)
  - Class B (16,384 x 65K hosts)
  - Class C (2M x 254 hosts)





### **Address Architecture - Classful**

Class A: 128 networks x 16M hosts (50% of all address space)

|   | A (7 bits) | Host address (24 bits) |       |
|---|------------|------------------------|-------|
| 0 |            |                        | 0-127 |

Class B: 16K networks x 64K hosts (25%)

| B (14 bits) | Host (16 bits) |
|-------------|----------------|
| 10          | 128-191        |

Class C: 2M networks x 254 hosts (12.5%)

 C (21 bits)
 Host (8 bits)

 110
 192-223



### **Internet Challenges 1992**

- Address space depletion
  - IPv4 address space is finite
  - Historically, many wasteful allocations
- Routing chaos
  - Legacy routing structure, router overload
  - CIDR & aggregation are now vital
- Inequitable management
  - Unstructured and wasteful address space distribution





### **Classless & Classful addressing**



Network boundaries may occur at any bit

# **Evolution of Internet Eco System**





### Evolution of Internet Resource Management

- 1993: Development of "CIDR"
  - addressed both technical problems



#### Address depletion

- → Through more accurate assignment
  - variable-length network address

#### Routing table overload

- → Through address space aggregation
  - " supernetting"



### **Evolution of Internet Resource Management**

- Administrative problems remained
  - Increasing complexity of CIDR-based allocations
  - Increasing awareness of conservation and aggregation
  - Need for fairness and consistency
- RFC 1366 (1992)
  - Described the "growth of the Internet and its increasing globalization"
- RFC 1366

- Additional complexity of address management
- Set out the basis for a regionally distributed Internet registry system





### **Evolution of Address Policy**

- Establishment of RIRs
  - Regional open processes
  - Cooperative policy development
  - Industry self-regulatory model
    - bottom up





### **World Internet Users Today**

Internet Users in the World by Geographic Regions - 2012 Q2



Source: Internet World Stats - www.internetworldstats.com/stats.htm 2,405,518,376 Internet users estimated for June 30, 2012 Copyright © 2012, Miniwatts Marketing Group





#### World Internet Penetration Today World Internet Penetration Rates

#### by Geographic Regions - 2012 Q2



Source: Internet World Stats - www.internetworldststs.com/stats.htm Penetration Rates are based on a world population of 7,017,846,922 and 2,405,518,376 estimated Internet users on June 30, 2012. Copyright © 2012, Miniwatts Marketing Group

APN



# Internet Operational Fundamentals





### How does the Internet work

- Physical connectivity and reachability
  - Packet switching
- Protocols common communication and rules
   TCP/IP
- Addressing global accessibility
  - IPv4, AS numbers, IPv6
    - IANA RIRs





### Where do IP addresses come from?



### **Internet Routing**







### **Internet Routing**





202.12.29.0/24

APNIC



### **IP Addresses vs Domain Names**







### Who Runs the Internet?

- No one
- (Not ICANN, not the RIRs, not the governments...)
- It is decentralized





### How does it Keep on Working

- Inter-provider business relationships and the need for customer reachability ensures that the Internet by and large functions for the common good
- Driven by commerce free market
- Engineers and the Internet community talk to each other





# Regional Internet Registry System





### **Regional Internet Registries**

- RIRs manage, distribute, and register Internet number resources (IPv4 and IPv6 addresses and Autonomous System Numbers) within their respective regions.
  - Ensuring the fair distribution and responsible management
- Five RIRs:
  - AfriNIC, APNIC, ARIN, LACNIC, RIPE NCC





### What are the Goals of the RIRs?

- The Regional Internet Registries have been charged with the following goals for the number resources they are responsible for:
  - Conservation
  - Aggregation
  - Registration





### Where Are The RIR Regions?







### **Internet Registry Structure**







### **APNIC from a Global Perspective**







### **APNIC in the Asia Pacific**







### **Global Policy Coordination**



#### The main aims of the NRO:

- To protect the unallocated number resource pool
- To promote and protect the bottom-up policy development process
- To facilitate the joint coordination of activities e.g., engineering projects
- To act as a focal point for Internet community input into the RIR system

### **Global Policy Coordination**



The main function of ASO:

• ASO receives global policies and policy process details from the NRO

ASO forwards global policies and policy process details to ICANN board




# Introduction to APNIC

#### APNIC



### What is **APNIC**?

- Regional Internet Registry (RIR) for the Asia Pacific region
  - One of five RIRs currently operating around the world
  - Non-profit, membership organisation
- Industry self-regulatory body
  - Open
  - Consensus-based
  - Transparent
- Meetings and mailing lists
  - <u>http://meetings.apnic.net</u>
  - <u>http://www.apnic.net/mailing-lists</u>





## **History of APNIC**

- 1993
  - APNIC was established as a project of the Asia Pacific Networking Group (APNG)
- 1994
  - IANA authorized APNIC to commence allocating resources in its region
- 1995
  - Inaugural APNIC meeting in Bangkok
- 1998
  - APNIC relocated from Tokyo to Brisbane
- 2000
  - First independently-held three day Open Policy Meeting
- 2002
  - Introduced the Member Services Helpdesk with extended operating hours





#### What does **APNIC** do?

#### Resource service

- IPv4, IPv6, ASNs
- Reverse DNS delegation
- Resource registration
  - Authoritative registration server
  - Whois
  - IRR

#### Policy development

- Facilitating the policy development process
- Implementing policy changes

#### Information dissemination

- APNIC meetings
- Web and ftp site
- Publications, mailing lists
- Outreach seminars

#### Training

- Face to Face Training and Workshops
- eLearning
- Subsidised for members





#### Where is the APNIC region?





## **APNIC is NOT**

- A network operator
  - Does not provide networking services
    - Works closely with APRICOT forum
- A standards body
  - Does not develop technical standards
    - Works within IETF in relevant areas (IPv6 etc)
- A domain name registry or registrar
  - Will refer queries to relevant parties





# Managing Internet Resources





## Internet Resource Management Objectives

#### Conservation

- Efficient use of resources
- Based on demonstrated need

#### Aggregation

- Limit routing table growth
- Support provider-based routing

#### Registration

- Ensure uniqueness
- Facilitate trouble shooting

Uniqueness, fairness and consistency





#### **IPv6 Allocation and Assignment**



#### **Portable and Non-Portable**

- Portable Assignments
  - Customer addresses independent from ISP
  - Keeps addresses when changing ISP
  - Bad for size of routing tables
  - Bad for QoS: routes may be filtered, flap-dampened
- Non-portable Assignments
  - Customer uses ISP's address space
  - Must renumber if changing ISP
  - Only way to effectively scale the Internet
- Portable allocations
  - Allocations made by APNIC/NIRs



#### **Customer assignments**





Customer assignments



#### **IPv4 Address Space**

#### STATUS OF 256 /8s IPv4 ADDRESS SPACE



#### **IPv6 Address Space**





March 2011 - NRO

:(::)

### **Aggregation and Portability**

#### Aggregation



#### No aggregation

#### BGP Announcements (4)



Customer assignments (portable assignments)









## Growth of the Global Routing Table

441017 prefixes

As of 03 Jan 2013

(::)(::)



APNIC

## **Address Management Hierarchy**



(::)(::)

APNIC

# Policy Development Process





### **Policies and their Development**

- Policies are constantly changing to meet the technical needs of the Internet
- There is a system in place called the Policy Development Process
  - Anyone can participate
  - Anyone can propose a policy
  - All decisions & policies documented & freely available to anyone





### You are Part of the APNIC Community!

- Open forum in the Asia Pacific
  - Open to any interested parties



A voice in regional Internet operations through participation in APNIC



### **Policy Development Process**



#### APNIC



#### **Policy Development Process**



#### You can participate!

More information about policy development can be found at:

http://www.apnic.net/policy





## Why Participate?

- You are part of the Community
  - APNIC policies are developed by the membership and broader Internet community
- Knowing and understanding the policies are important for your organization
  - This is your chance to comment on policies that may directly affect you
- Opportunity to learn and share experiences





### **How to Participate**

- Joining APNIC conferences and meetings
- You can participate further

Ask questions and clarify points

Make your voice heard

Vote

- Attend remotely
  - Video, audio, text streaming, chat
- Trainings, seminars and outreach events
- Join the discussion in the mailing list



### **From Regional to Global Policies**

While RIRs and their respective communities are responsible for policies specific to their regions, there are times when a policy needs to be global.





#### **Global Policy Coordination**







# Supporting Internet Development





## **Projects - Root Server Deployment**

- A number of mirrored root server sites have been placed into the Asia Pacific region
- Lowers the transit cost by using a nearby instance of a root server
- The sites are partially or fully funded by APNIC, but operate as "anycast" mirror copies of existing Root servers, by the applicable root server operator







### **Grants For Community Support**

 The Information Society Innovation Fund is a small grants program funding innovative approaches to the extension of Internet infrastructure and services in the Asia Pacific region







## **IPv6 Program**

- Monitor: IPv6 technical development and BCP, deployment statistics, and challenges and solutions
- Outreach: Share timely, useful and customised information on IPv6 with the Internet stakeholders (network operators, content providers, content distribution networks, software developers, governments and inter-governmental organizations, civil society etc.)
- Facilitate: Encourage proactive communication and discussion among intra/inter Internet stakeholders on IPv6 deployment
- Assist: REAL and TANGIBLE IPv6 deployment





### **APNIC Labs**

- IPv6 measurement
  - http://labs.apnic.net/ipv6-measurement/
- Resource Certification / RPKI





#### **APNIC Helpdesk Chat**







# Introduction to Internet Protocols and Operations





### What is a **Protocol**?

- Set of rules that define the communications process
- defines the structure or pattern for the data transferred
  - functions or processes that need to be carried out in order to implement the data exchange
  - information required by processes in order for them to accomplish this
- All data is transmitted in the same way irrespective of what the data refers to, whether it is clear or encrypted.





### **The OSI Model**

#### Application

#### Presentation

Session

Transport

Network

Data Link

Physical

Access to the network

Manipulate data (Translate, encrypt)

Manage sessions (connections)

Provide reliable delivery

Internetwork - move packets from source to destination

Configure data for direct delivery by physical layer

Physical delivery - electrical specs etc





### **OSI and TCP/IP Model**



Presentation

Session

Transport

Network

Data Link

Physical



#### Transport

Internet

#### **Network Access**

#### APNIC



#### **Encapsulating Data**



APNIC

Source: www.cisco.com (ICN

(ICND v1.0a-1-11)
### **De-encapsulating Data**



### Internet Protocol (IP)

- IP is an unreliable, connectionless delivery protocol
  - A best-effort delivery service
  - No error checking or tracking (no guarantees Post Office)
  - Every packet treated independently
  - IP leaves higher level protocols to provide reliability services (if needed)
- IP provides three important definitions:
  - basic unit of data transfer
  - routing function
  - rules about delivery





### **TCP/IP Protocol Structure**

| SMTP                  | FTP | Telnet | DNS      | HTTP |
|-----------------------|-----|--------|----------|------|
|                       | UDP |        |          | TCP  |
|                       |     |        | ARP RARP |      |
| DATA LINK<br>PHYSICAL |     |        |          |      |





## **IP Addressing Basics**

### APNIC



### Where do IP addresses come from?



### **IP Addressing Issues**

- Exhaustion of IPv4 addresses
  - Wasted address space in traditional subnetting
  - Limited availability of /8 subnets address
- Internet routing table growth
  - Size of the routing table due to higher number prefix announcement
- Tremendous growth of the Internet





### How many IPv4 IANA pool available

#### STATUS OF 256 /8s IPv4 ADDRESS SPACE



### **IP Addressing Solutions**

- Subnet masking and summarization
  - Variable-length subnet mask definition
  - Hierarchical addressing
  - Classless InterDomain Routing (CIDR)
  - Routes summarization (RFC 1518)
- Private address usage (RFC 1918)
  - Network address translation (NAT)
- Development of IPv6 address





### Variable Length Subnet Mask (VLSM)

- Allows the ability to have more than one subnet mask within a network
- Allows re-subnetting
  - create sub-subnet network address
- Increase the routes capability
  - Addressing hierarchy
  - Summarisation





### **Calculating VLSM example**

- Subnet 192.168.0.0/24 into smaller subnet
  - Subnet mask with /27 and /30 (point-to-point)



### **Calculating VLSM example (cont.)**

- Subnet 192.168.0.0/24 into smaller subnet
  - Subnet mask with /30 (point-to-point)

| Description              | Decimal        | Binary                 |
|--------------------------|----------------|------------------------|
| Network<br>Address       | 192.168.0.0/30 | x.x.x.000000 <b>00</b> |
| 1 <sup>st</sup> valid IP | 192.168.0.1/30 | x.x.x.00000001         |
| 2 <sup>nd</sup> valid IP | 192.168.0.2/30 | x.x.x.00000010         |
| Broadcast<br>address     | 192.168.0.3/30 | x.x.x.00000011         |





### **Calculating VLSM example (cont.)**

- Subnet 192.168.0.0/24 into smaller subnet
  - Subnet mask with /27

| Description                    | Decimal                | Binary                 |
|--------------------------------|------------------------|------------------------|
| Network<br>Address             | 192.168.0.32/27        | x.x.x.000 <b>00000</b> |
| Valid IP range<br>192.168.0.33 | x.x.x.000 <b>00001</b> |                        |
|                                | x.x.x.000 <b>00010</b> |                        |
| Broadcast<br>address           | 192.168.0.63/30        | x.x.x.00011111         |





### **Addressing Hierarchy**



### **Classful and Classless**

- Classful (Obsolete)
  - Wasteful address architecture
    - network boundaries are fixed at 8, 16 or 24 bits
    - (class A, B, and C)
- Classless
  - Efficient architecture
    - network boundaries may occur at any bit
    - (e.g. /12, /16, /19, /24 etc)
- CIDR
  - Classless Inter Domain Routing architecture
  - Allows aggregation of routes within ISPs infrastructure

Best Current

Practice







### **Prefix Routing / CIDR**

 CIDR offers the advantages reducing the routing table size of the network by summarising the ISP announcement in a single /21 advertisement



### **Route Summarisation**

- Allows the presentation of a series of networks in a single summary address.
- Advantages:
  - Faster convergence
  - Reducing the size of the routing table
  - Simplification
  - Hiding Network Changes
  - Isolate topology changes





## **AS Numbers**

### APNIC



## What is an Autonomous System Number?

- Autonomous System Numbers (ASNs) are globally unique identifiers for IP networks
- ASNs are allocated to each Autonomous System (AS) for use in BGP routing
- AS numbers are important because the ASN uniquely identifies each network on the Internet





### What Is An Autonomous System?

- Group of Internet Protocol-based networks with the same routing policy
- Usually under single ownership, trust or administrative control
- The AS is used both in the exchange of exterior routing information (between neighboring ASes) and as an identifier of the AS itself





### **How Do Autonomous Systems Work?**



### When Do I Need An ASN?

- An ASN is needed if you have a
  - Multi-homed network to different providers AND
  - Routing policy different to external peers
  - \* For more information please refer to RFC1930: Guidelines for creation, selection and registration of an Autonomous System







### **Requesting an AS Number**

- If a member requests an ASN from APNIC for own network infrastructure
  - AS number is "portable"
- If a member requests an ASN from APNIC for its downstream customer network
  - ASN is "non-portable"
  - ASN is returned if the customer changes provider
- Current Distribution
  - Previously 2 byte ASN (16 bits) runs into possibility of exhaustion
  - Currently 4 byte ASN distribution policy 32 bits
  - 2 byte ASN on request with documented justification





### **Aut-num Object Example**

| aut-num: | AS4777                                             |
|----------|----------------------------------------------------|
| as-name: | APNIC-NSPIXP2-AS                                   |
| Descr:   | Asia Pacific Network Information Centre            |
| descr:   | AS for NSPIXP2, remote facilities site             |
| import:  | from AS2500 action pref=100; accept ANY            |
| import:  | <pre>from AS2524 action pref=100; accept ANY</pre> |
| import:  | from AS2514 action pref=100; accept ANY            |
| export:  | to AS2500 announce AS4777                          |
| export:  | to AS2524 announce AS4777 POLICY                   |
| export:  | to AS2514 announce AS4777 RPSL                     |
| default: | to AS2500 action pref=100; networks ANY            |
| admin-c: | PW35-AP                                            |
| tech-c:  | NO4-AP                                             |
| remarks: | Filtering prefixes longer than 🎢 🔊                 |
| mnt-by:  | MAINT-APNIC-AP                                     |
| changed: | paulg@apnic.net 19981028                           |
| source:  | APNIC                                              |
|          |                                                    |

1007

### **AS Number Representation**

- 2-byte only AS number range : 0 65535
- 4-byte only AS number range represented in two ways
  - AS PLAIN: 65,536 4,294,967,295
  - AS DOT: 1.0 65535.65535
- Usages
  - 0 and 65535 Reserved
  - 1 to 64495 Public Internet
  - 64496 to 64511 Documentation RFC5398
  - 64512 to 65534 Private use
  - 23456 represent 32 Bit range in 16 bit world
  - 65536 to 65551 Documentation RFC 5398
  - 65552 to 4294967295 Public Internet





### **AS PLAIN**

- IETF preferred standard notation RFC5396
- Continuation on how a 2-Byte AS number has been represented historically
- Notation: The 32 bit binary AS number is translated into a single decimal value
  - Example: AS 65546
- Total AS Plain range:
  2 byte: 0 65535 (original 16-bit range)
  4 byte: 65,536 4,294,967,295 (RFC4893)
  - APNIC region uses the AS PLAIN style of numbering





### **AS DOT**

- Based upon 2-Byte AS representation
  - <Higher2bytes in decimal> . <Lower2bytes in decimal>
    - For example: AS 65546 is represented as 1.10
  - Easy to read, however hard for regular expressions
  - There is a meta character "." in regular expression
    - For example, a.c matches "abc", etc., but [a.c] matches only "a", "32 bit AS number representation
- Example: AS PLAIN Converted to AS DOT
  - AS PLAIN: 131072 ~ 132095
  - AS DOT: 2.0 ~ 2.1023





# 16 bit and 32 bit ASN - Working Together

- With the introduction of the "new" 32 bit AS Numbers, and the continuation of use of "old" 16 bit AS Numbers, a way had to be found to get them to work together
- The solution is known as AS23456, which allows BGP to either convert or truncate the AS number if it detects an "old" 16 bit number as part of the exchange





## **IP Routing Basics**





### **Internet Routing**







### **Internet Routing**





202.12.29.0/24

APNIC



### What does a router do?

• ?





### A day in a life of a router

- find path
- forward packet, forward packet, forward packet, forward packet...
- find alternate path
- forward packet, forward packet, forward packet, forward packet...
- repeat until powered off







### **Routing versus Forwarding**

- Routing = building maps and giving directions
- Forwarding = moving packets between interfaces according to the "directions"







### **IP Routing – finding the path**

- Path derived from information received from a routing protocol
- Several alternative paths may exist
  - best path stored in forwarding table
- Decisions are updated periodically or as topology changes (event driven)
- Decisions are based on:
  - topology, policies and metrics (hop count, filtering, delay, bandwidth, etc.)





### **Metric field**

- To determine which path to use if there are multiple paths to the remote network
- Provide the value to select the best path
- But take note of the administrative distance selection process <sup>(2)</sup>

| Routing Protocol | Metric                                                 |
|------------------|--------------------------------------------------------|
| RIPv2            | Hop count                                              |
| EIGRP            | Bandwidth, delay, load, reliability,<br>MTU            |
| OSPF             | Cost (the higher the bandwidth indicates a lower cost) |
| IS-IS            | Cost                                                   |




#### **IP route lookup**

- Based on destination IP address
- "longest match" routing
  - More specific prefix preferred over less specific prefix
  - Example: packet with destination of 10.1.1.1/32 is sent to the router announcing 10.1/16 rather than the router announcing 10/8.





#### **IP route lookup**

Based on destination IP address



R2's IP routing table





Based on destination IP address



Based on destination IP address



R2's IP routing table

Based on destination IP address



R2's IP routing table



Based on destination IP address



Based on destination IP address





#### **RIBs and FIBs**

- FIB is the Forwarding Table
  - It contains destinations and the interfaces to get to those destinations
  - Used by the router to figure out where to send the packet
  - Careful! Some people still call this a route!
- RIB is the Routing Table
  - It contains a list of all the destinations and the various next hops used to get to those destinations – and lots of other information too!
  - One destination can have lots of possible next-hops only the best next-hop goes into the FIB





#### **Routing Tables Feed the Forwarding Table**



117

# **Explicit versus Default Routing**

- Default:
  - simple, cheap (cycles, memory, bandwidth)
  - low granularity (metric games)
- Explicit (default free zone)
  - high overhead, complex, high cost, high granularity
- Hybrid
  - minimise overhead
  - provide useful granularity
  - requires some filtering knowledge





# **Routing Policy**

- Used to control traffic flow in and out of an ISP network
- ISP makes decisions on what routing information to accept and discard from its neighbours
  - Individual routes
  - Routes originated by specific ASes
  - Routes traversing specific ASes
  - Routes belonging to other groupings
    - Groupings which you define as you see fit





# **Representation of Routing Policy**

Routing and packet flows



#### For AS1 and AS2 networks to communicate

- AS1 must announce to AS2
- AS2 must accept from AS1
- AS2 must announce to AS1
- AS1 must accept from AS2





#### **Representation of Routing Policy**





#### **Routing flow and Traffic flow**

- Traffic flow is always in the opposite direction of the flow of Routing information
  - Filtering outgoing routing information inhibits traffic flow inbound
  - Filtering inbound routing information inhibits traffic flow outbound





# Routing Flow/Packet Flow: With multiple ASes



- For net N1 in AS1 to send traffic to net N16 in AS16:
  - AS16 must originate and announce N16 to AS8.
  - AS8 must accept N16 from AS16.
  - AS8 must forward announcement of N16 to AS1 or AS34.
  - AS1 must accept N16 from AS8 or AS34.
- For two-way packet flow, similar policies must exist for N1



#### Routing Flow/Packet Flow: With multiple ASes



• As multiple paths between sites are implemented it is easy to see how policies can become quite complex.





#### **Routing Protocols**

- Routers use "routing protocols" to exchange routing information with each other
  - IGP is used to refer to the process running on routers inside an ISP's network
  - EGP is used to refer to the process running between routers bordering directly connected ISP networks





#### What Is an IGP?

- Interior Gateway Protocol
- Within an Autonomous System
- Carries information about internal infrastructure prefixes
- Two widely used IGPs in service provider network:
  OSPF
  - ISIS





#### Why Do We Need an IGP?

- ISP backbone scaling
  - Hierarchy
  - Limiting scope of failure
  - Only used for ISP's infrastructure addresses, not customers or anything else
  - Design goal is to minimise number of prefixes in IGP to aid scalability and rapid convergence





#### What Is an EGP?

- Exterior Gateway Protocol
- Used to convey routing information between Autonomous Systems
- De-coupled from the IGP
- Current EGP is BGP





## Why Do We Need an EGP?

- Scaling to large network
  - Hierarchy
  - Limit scope of failure
- Define Administrative Boundary
- Policy
  - Control reachability of prefixes
  - Merge separate organisations
  - Connect multiple IGPs





#### **Administrative Distance**

- method used for selection of route priority of IP routing protocol, the lowest administrative distance is preferred
  - Manually entered routes are preferred from dynamically learned routes
    - Static routes
    - Default routes
  - Dynamically learned routes depend on the routing protocol metric calculation algorithm and default metrics values the smallest metric value are preferred





#### **Administrative Distance Chart (Cisco)**

| Routed Sources                | Default Distance |
|-------------------------------|------------------|
| Connected interface           | 0                |
| Static route out an interface | 0                |
| Static route to a next hop    | 1                |
| External BGP                  | 20               |
| IGRP                          | 100              |
| OSPF                          | 110              |
| IS-IS                         | 115              |
| RIP v1, v2                    | 120              |
| EGP                           | 140              |
| Internal BGP                  | 200              |
| Unknown                       | 255              |





# **DNS and Reverse DNS**

#### APNIC



# **Domain Name System**

- A lookup mechanism for translating objects into other objects
  - Mapping <u>names</u> to <u>numbers</u> and vice versa
- A globally distributed, loosely coherent, scalable, reliable, dynamic database
- Comprised of three components
  - A "name space"
  - Servers making that name space available
  - Resolvers (clients) which query the servers about the name space
- A critical piece of the Internet infrastructure





#### **DNS Features**

- Global distribution
  - Shares the load and administration
- Loose Coherency
  - Geographically distributed, but still coherent
- Scalability
  - can add DNS servers without affecting the entire DNS
- Reliability
- Dynamicity
  - Modify and update data dynamically













# Delegation

- Administrators can create subdomains to group hosts
  - According to geography, organizational affiliation or any other criterion
- An administrator of a domain can delegate responsibility for managing a subdomain to someone else
- The parent domain retains links to the delegated subdomain
  - The parent domain "remembers" to whom it delegated the subdomain





#### **Zones and Delegations**

- Zones are "administrative spaces"
- Zone administrators are responsible for portion of a domain's name space
- Authority is delegated from parent to child







#### **Name Servers**

- Name servers answer 'DNS' questions
- Several types of name servers
  - Authoritative servers
    - Master / primary
    - Slave / secondary
  - Caching or recursive servers
    - also caching forwarders
- Mixture of functions









#### **Concept: Resolving process & Cache**







#### **Resource Records**

- Entries in the DNS zone file
- Components:

| <b>Resource Record</b> | Function                                               |
|------------------------|--------------------------------------------------------|
| Label                  | Name substitution for FQDN                             |
| TTL                    | Timing parameter, an expiration limit                  |
| Class                  | IN for Internet, CH for Chaos                          |
| Туре                   | RR Type (A, AAAA, MX, PTR) for different purposes      |
| RDATA                  | Anything after the Type identifier;<br>Additional data |





#### **Common Resource Record Types**

| RR Type      | Name                | Functions                                                                                                                 |
|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------------|
| A            | Address record      | Maps domain name to IP address<br>www.apnic.net. IN A 203.176.189.99                                                      |
| AAAA         | IPv6 address record | Maps domain name to an IPv6 address<br>www.apnic.net. IN AAAA 2001:db8::1                                                 |
| NS           | Name server record  | Used for delegating zone to a nameserver apnic.net. IN NS ns1.apnic.net.                                                  |
| PTR          | Pointer record      | Maps an IP address to a domain name<br>99.189.176.203.in-addr.arpa. IN PTR<br>www.apnic.net.                              |
| CNAME        | Canonical name      | Maps an alias to a hostname<br>web IN CNAME www.apnic.net.                                                                |
| MX           | Mail Exchanger      | Defines where to deliver mail for user @<br>domain<br>apnic.net. IN MX 10 mail01.apnic.net.<br>IN MX 20 mail02.apnic.net. |
| <b>APNIC</b> |                     | (:: <b>)()::)::)</b> (::)                                                                                                 |
## Start of Authority (SOA) record

Domain\_name. CLASS SOA hostname.domain.name. mailbox.domain.name ( Serial Number Refresh Retry Expire Minimum TTL )

- Serial Number must be updated if any changes are made in the zone file
- **Refresh** how often a secondary will poll the primary server to see if the serial number for the zone has increased
- **Retry** If a secondary was unable to contact the primary at the last refresh, wait the retry value before trying again
- **Expire** How long a secondary will still treat its copy of the zone data as valid if it can't contact the primary.
- Minimum TTL The default TTL (time-to-live) for resource records





### **TTL Time Values**

- The right value depends on your domain
- Recommended time values for TLD (based on RFC 1912)

| Refresh | 86400 (24h)   |
|---------|---------------|
| Retry   | 7200 (2h)     |
| Expire  | 2592000 (30d) |
| Min TTL | 345600 (4d)   |

- For other servers optimize the values based on
  - Frequency of changes
  - Required speed of propagation
  - Reachability of the primary server
  - (and many others)





#### **Example: RRs in a Zone File**

APNIC

| apnic.net. 7200 IN | SOA n              | s.apnic.r                  | net. admi  | n.apnic.net. ( |  |
|--------------------|--------------------|----------------------------|------------|----------------|--|
| 20130              | )522               | ; Seri                     | al         |                |  |
| 12h                | ; Refresh 12 hours |                            |            | ours           |  |
| 4h                 |                    | ; Retr                     | y 4 hours  | 6              |  |
| 4d                 |                    | ; Exp                      | ire 4 days | S              |  |
| 2h                 |                    | ; Negative cache 2 hours ) |            |                |  |
|                    |                    |                            |            |                |  |
| apnic.net.         | 7200               | IN                         | NS         | ns.apnic.net.  |  |
| apnic.net.         | 7200               | IN                         | NS         | ns.ripe.net.   |  |
| whois.apnic.net.   | 3600               | IN                         | А          | 193.0.1.162    |  |
| www.apnic.net      | 3600               | IN                         | A          | 192.0.3.25     |  |
| Label              | /<br>TTL           | T<br>Class                 | Туре       | Rdata          |  |







## **Pointer (PTR) records**

• Create pointer (PTR) records for each IP address

131.28.12.202.in-addr.arpa. IN PTR svc00.apnic.net.

or

| 131 | IN | PTR | svc00.apnic.net. |
|-----|----|-----|------------------|
|     |    |     |                  |





#### **IPv6 Reverse Lookups – PTR records**

• Similar to the IPv4 reverse record

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.ip6.arpa.

IN PTR test.ip6.example.com.

• Example: reverse name lookup for a host with address 3ffe: 8050:201:1860:42::1

\$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.arpa.

1.0.0.0.0.0.0.0.0.0.0.2.4.0.0 14400 IN PTR host.example.com.





## **Reverse Delegation Requirements**

- /24 Delegations
  - Address blocks should be assigned/allocated
  - At least two name servers
- /16 Delegations
  - Same as /24 delegations
  - APNIC delegates entire zone to member
  - Recommend APNIC secondary zone
- </24 Delegations</li>
  - Read "Classless IN-ADDR.ARPA delegation" (RFC 2317)







## **APNIC & ISPs Responsibilities**

- APNIC
  - Manage reverse delegations of address block distributed by APNIC
  - Process organisations requests for reverse delegations of network allocations
- Organisations
  - Be familiar with APNIC procedures
  - Ensure that addresses are reverse-mapped
  - Maintain nameservers for allocations
  - Minimise pollution of DNS





#### **Reverse Delegation Procedures**

- Standard APNIC database object,
  - can be updated through myAPNIC
- Nameserver/domain set up verified before being submitted to the database.
- Protection by maintainer object
  - (current auths: CRYPT-PW, PGP).
- Any queries
  - Contact helpdesk@apnic.net





#### **Reverse Delegation Procedures**

| IPv4       IPv6       ASN       Whois updates       Certification       Maintainers       IRTs       Correspond         Home / Resource management / Reverse DNS       Add reverse DNS delegation       Add reverse DNS delegation       Add reverse DNS delegation vou provide in the form below will be used to create your domain object in the APNIC Whois Database. Please make sure that your name servers are running and are authoritative for the zone, or your reverse DNS delegation might not function correctly.         Address range:       Use CIDR address prefix notation. Multiple range allowed, one range per line.       Example:         202.12.28.0/22       202.12.38.0/22       Example:         202.12.38.0/22       Name servers:       List fully qualified domain name of at least one server.         Important: Do not list IP addresses or reverse DNS mames.       Example:       Nameple:         Maintainer:       Important: Do not list IP addresses or reverse DNS       Example:         Descent descent comment.       Maintainer:       Example:         Descent comment.       Important: Do not list IP addresses or reverse DNS       Example:         Descent comment.       Maintainer:       Example:         Descent comment.       Important: Do not list IP addresses or reverse DNS       Example:         Descent comments       Example:       Descent addresse                                                                                                                      |      |                            |                                        | Tools                                                | Training                                                  | Administration                                                         | Resources                                                     | Home                        |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------|----------------------------------------|------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|-------------------------------------------|
| Action Controls       Add researce management / Reverse DNS         Action Controls       Add researce management / Reverse DNS         Researce register your wholes       Important: The information you provide in the form below will be used to create your domain object in the APNIC Whole Database. Please make sure that your name servers are running and are authoritative for the zone, or your reverse DNS delegation might not function correctly.         Address range:       Use CIDR address prefix notation. Multiple range allowed, one range per line.         Example:       List fully qualified domain name of at least one server.         Important: Do not list IP addresses or reverse DNS names.       Example:         Maintaine:       Example:         Maintaine:       List serverse         Maintaine:       Example:         Maintaine:       Example:         Maintaine:       Example:         Maintaine:       Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ence | Correspondence             | IRTs                                   | Maintainers                                          | Certification                                             | Whois updates                                                          | IPv6 ASN                                                      | IPv4                        |                                           |
| Reminder         Prease register your whois maintainer.         Add recerse DNS delegation dipter in the APNIC Whois Database. Please make sure that your name servers are running and are authoritative for the zone, or your reverse DNS delegation might not function correctly.         Address range:       Use CIDR address prefix notation. Multiple range allowed, one range per line.         Use CIDR address prefix notation. Multiple range allowed, one range per line.       Example:         District The information per visit in the APNIC Whois Database.       Example:         District The information per visit in the APNIC whois Database.       Example:         District The information per visit in the APNIC whois Database.       Example:         District The information per visit in the APNIC whois Database.       Example:         District The information per visit in the APNIC whois Database.       Example:         District The information per visit in the APNIC Whois Database.       Example:         District The information per visit in the APNIC Whois Database.       Example:         District The information per visit in the APNIC Whois Database.       Example:         District The information per visit in the APNIC Whois Database.       Example:         District The information per visit in the APNIC Whois Database.       Example:         District The information per visit in the APNIC Whois Database.       Example:         District The Informatin per visit |      |                            |                                        |                                                      |                                                           | ement / Reverse DNS                                                    | Resource manage                                               | Home / I                    |                                           |
| Please register your whois       Important: The information you provide in the form below will be used to create your domain object in the APNIC Whois Database. Please make sure that your name servers are running and are authoritative for the zone, or your reverse DNS delegation might not function correctly.         Address range:       Use CIDR address prefix notation. Multiple range allowed, one range per line.       Example:         District fully qualified domain name of at least one server.       Important: Do not list IP addresses or reverse DNS names.       Example:         District reverse DNS       mathematic.       Example:       Example:         District reverse DNS       mathematic.       Example.com         District reverse DNS       mathematic.com       mathematic.com         District reverse DNS       mathematic.com       Example.com         District reverse DNS       mathematic.com       Example.com         District reverse DNS       mathematic.com       Example.com         District reverse DNS       Example.com       Example.com                                                                                                                |      |                            |                                        |                                                      | 1                                                         | IS delegatior                                                          | reverse DN                                                    | Add r                       | Reminder                                  |
| Address range:   Use CIDR address prefix notation. Multiple range allowed, one range per line.   Example:   202.12.28.0/22   202.12.0.0.0/20     Name servers:   List fully qualified domain name of at least one server.   Important: Do not list IP addresses or reverse DNS names.   Maintainer:   Maintainer:   Example:   List station in the interverse DNS names.   Example.com   Example.com   Example.com   Example.com   Example.com   Example.com   Example.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | omain<br>ning and<br>ttly. | ate your d<br>rs are run<br>tion corre | l be used to cre<br>our name serve<br>might not func | e form below will<br>make sure that y<br>e DNS delegation | tion you provide in th<br>ois Database. Please<br>zone, or your revers | ant: The informat<br>in the APNIC Who<br>thoritative for the  | Import<br>object<br>are aut | Please register your whois<br>naintainer. |
| Use CIDR address prefix<br>notation. Multiple range<br>allowed, one range per line.<br>Example:<br>202.122.8.0/22<br>202.120.0.0/20<br>Name servers:<br>List fully qualified domain<br>name of at least one server.<br>Important: Do not list IP<br>addresses or reverse DNS<br>names.<br>Maintainer:<br>Example.com<br>ns2.example.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                            |                                        |                                                      |                                                           |                                                                        | ress range:                                                   | Addr                        |                                           |
| Example:         202.12.28.0/22         202.12.28.0/22         202.12.0.0.0/20         Name servers:         List fully qualified domain name of at least one server.         Important: Do not list IP addresses or reverse DNS names.         Maintainer:         Maintainer:         Example:         Example:         Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                            |                                        |                                                      |                                                           | refix<br>nge<br>per line.                                              | e CIDR address pr<br>tation. Multiple ra<br>owed, one range p | Us<br>no<br>all             |                                           |
| 222.12.28.0/22         202.120.0/20         Name servers:         List fully qualified domain         name of at least one server.         Important: Do not list IP         addresses or reverse DNS         names.         Maintainer:         Example:         Example:         Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                            |                                        |                                                      | nple:                                                     | Exan                                                                   |                                                               |                             |                                           |
| Name servers:       List fully qualified domain name of at least one server.         Important: Do not list IP addresses or reverse DNS names.       Example:         Maintainer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                            |                                        |                                                      | .28.0/22<br>0.0.0/20                                      | 202.12                                                                 |                                                               |                             |                                           |
| List fully qualified domain<br>name of at least one server.<br>Important: Do not list IP<br>addresses or reverse DNS<br>names.<br>Maintainer:<br>Kample.com<br>Example.com<br>Example.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                            |                                        |                                                      |                                                           |                                                                        | ie servers:                                                   | Nam                         |                                           |
| Important: Do not list IP         addresses or reverse DNS         names.         nsl.example.com         Maintainer:         Example:         Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                            |                                        |                                                      |                                                           | omain<br>server.                                                       | t fully qualified do<br>me of at least one                    | Lis                         |                                           |
| addresses or reverse DNS     Example:       names.     ns1.example.com       Maintainer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | li.                        |                                        |                                                      |                                                           | st IP                                                                  | portant: Do not li                                            | Im                          |                                           |
| Maintainer:<br>Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                            |                                        |                                                      | nple:<br>ample.com<br>ample.com                           | DNS Exan                                                               | dresses or reverse<br>mes.                                    | ad<br>na                    |                                           |
| Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                            |                                        |                                                      |                                                           |                                                                        | ntainer:                                                      | Main                        |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                            |                                        |                                                      | nple:                                                     | Exan                                                                   |                                                               |                             |                                           |
| MAINT-AU-EXAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                            |                                        |                                                      | AU-EXAMPLE                                                | MAINT-                                                                 |                                                               |                             |                                           |





### Whois domain object







# Thank You



