APNIC DNS Tutorial

Contact: training@apnic.net
DNS

• A lookup mechanism for translating objects into other objects
• A globally distributed, loosely coherent, scalable, reliable, dynamic database
• Comprised of three components
 – A “name space”
 – Servers making that name space available
 – Resolvers (clients) which query the servers about the name space
DNS Features

• Global distribution
• Loose Coherency
• Scalability
• Reliability
• Dynamicity
DNS Names - FQDNs

dots

Root DNS

net org com ccTLDs

apnic iana

www whois ftp
Domains

• Domains are “namespaces”

• Everything below .com is in the com domain

• Everything below apnic.net is in the apnic.net domain and in the net domain
Domains

apnic.net domain

net domain

com domain

apnic

isi

training

ns2

ns1

www

ftp

edu

com

sun

moon

tislabs

google

www
Delegation

• Administrators can create subdomains to group hosts
 – According to geography, organizational affiliation or any other criterion

• An administrator of a domain can delegate responsibility for managing a subdomain to someone else
 – But this isn’t required

• The parent domain retains links to the delegated subdomain
 – The parent domain “remembers” who it delegated the subdomain to
Zones and Delegations

• Zones are “administrative spaces”

• Zone administrators are responsible for portion of a domain’s name space

• Authority is delegated from a parent and to a child
Name Servers

• Name servers answer ‘DNS’ questions

• Several types of name servers
 – Authoritative servers
 • master (primary)
 • slave (secondary)
 – (Caching) recursive servers
 • also caching forwarders
 – Mixture of functionality
Concept: Resolving process & Cache

Question: www.apnic.net A

- Resolver
- Caching forwarder (recursive)
- root-server
 - www.apnic.net A?
 - Ask net server @ X.gtld-servers.net (+ glue)
- gtld-server
 - www.apnic.net A?
 - Ask apnic server @ ns.apnic.net (+ glue)
- apnic-server
 - www.apnic.net A?
 - 192.168.5.10
- Add to cache
Concept: Resource Records

- Resource records consist of it’s name, it’s TTL, it’s class, it’s type and it’s RDATA
- TTL is a timing parameter
- IN class is widest used
- There are multiple types of RR records
- Everything behind the type identifier is called rdata
Example: RRs in a zone file

```
apnic.net. 7200 IN SOA ns.apnic.net. admin.apnic.net. 
  (  
    2009012001 ; Serial  
    12h  ; Refresh 12 hours  
    4h   ; Retry 4 hours  
    4d   ; Expire 4 days  
    2h   ; Negative cache 2 hours  
  )

apnic.net. 7200 IN NS ns.apnic.net.
apnic.net. 7200 IN NS ns.ripe.net.

host25.apnic.net. 2600 IN A 193.0.3.25
whois.apnic.net. 3600 IN A 193.0.1.162
```
Places where DNS data lives

- Changes do not propagate instantly

- Might take up to ‘refresh’ to get data from master

- Not going to net if TTL>0

- Upload of zone data is local policy

- Registry DB

- Master

- Slave server

- Slave

- Cache server
To remember...

- Multiple authoritative servers to distribute load and risk:
 - Put your name servers apart from each other

- Caches to reduce load to authoritative servers and reduce response times

- SOA timers and TTL need to be tuned to needs of zone. Stable data: higher numbers
Performance of DNS

- Server hardware requirements
- OS and the DNS server running
- How many DNS servers?
- How many zones expected to load?
- How large the zones are?
- Zone transfers
- Where the DNS servers are located?
- Bandwidth
Performance of DNS

• Are these servers Multihomed?
• How many interfaces are to be enabled for listening?
• How many queries are expected to receive?
• Recursion
• Dynamic updates?
• DNS notifications
Zone files

apnic.net. 3600 IN SOA NS1.apnic.net. admin \\
.email.apnic.net. (2002021301 ; serial
1h ; refresh
30M ; retry
1W ; expiry
3600) ; neg. answ. Ttl

apnic.net. 3600 IN NS NS1.apnic.net.
apnic.net. 3600 IN NS NS2.apnic.net.
apnic.net. 3600 IN MX 50 mail.apnic.net.
apnic.net. 3600 IN MX 150 mailhost2.apnic.net.
apnic.net. 3600 IN TXT “Demonstration and test zone”
NS1.apnic.net. 4500 IN A 203.0.0.4
NS2.apnic.net. 3600 IN A 193.0.0.202
localhost.apnic.net. 3600 IN A 127.0.0.1
www.apnic.net. 3600 IN CNAME IN.apnic.net.
Zone files

```
.apnic.net. 3600 IN SOA NS1.apnic.net. admin
\email.apnic.net. (2002021301; serial
1h; refresh
30M; retry
1W; expiry
3600) ; neg. answ. Ttl

3600 IN NS NS1.apnic.net.
3600 IN NS NS2.apnic.net.
3600 IN MX 50 mail.apnic.net.
3600 IN MX 150 mailhost2.apnic.net.

3600 IN TXT "Demonstration and test zone"

NS1.apnic.net. 3600 IN A 203.0.0.4
NS2.apnic.net. 3600 IN A 193.0.0.202

localhost.apnic.net. 4500 IN A 127.0.0.1

www.apnic.net. 3600 IN CNAME IN.apnic.net.
```
$TTL 3600 ; Default TTL directive

apnic.net. IN SOA NS1.apnic.net. admin\email.apnic.net. (2002021301 ; serial
1h ; refresh
30M ; retry
1W ; expiry
3600) ; neg. answ. Ttl

IN NS NS1.apnic.net.
IN NS NS2.apnic.net.
IN MX 50 mail.apnic.net.
IN MX 150 mailhost2.apnic.net.

IN TXT “Demonstration and test zone”

NS1.apnic.net. IN A 203.0.0.4
NS2.apnic.net. IN A 193.0.0.202

localhost.apnic.net. 4500 IN A 127.0.0.1

www.apnic.net. IN CNAME NS1.apnic.net.
Zone files

$TTL 3600 ; Default TTL directive
$ORIGIN apnic.net.
@ IN SOA NS1 admin\email.apnic.net. (2002021301 ; serial
1h ; refresh
30M ; retry
1W ; expiry
3600) ; neg. answ. Ttl

IN NS NS1
IN NS NS2
IN MX 50 mailhost
IN MX 150 mailhost2

IN TXT “Demonstration and test zone”

NS1 IN A 203.0.0.4
NS2 IN A 193.0.0.202

localhost 4500 IN A 127.0.0.1

www IN CNAME NS1
Zone files

$TTL 3600 ; Default TTL directive
$ORIGIN apnic.net.
@ SOA NS1 admin\email.sanog.org. (2002021301 ; serial 1h ; refresh 30M ; retry 1W ; expiry 3600) ; neg. answ. Ttl

NS NS1
NS NS2
MX 50 mailhost
MX 150 mailhost2

TXT "Demonstration and test zone"

NS1 A 203.0.0.4
NS2 A 193.0.0.202

localhost 4500 A 127.0.0.1
www CNAME NS1

APNIC
Delegating a zone (becoming a parent)

- Delegate authority for a sub domain to another party (splitting of \textit{training.apnic.net} from \textit{apnic.net})
• Delegation is done by adding NS records:
 training.apnic.net. NS ns1.training.apnic.net.
 training.apnic.net. NS ns2.training.apnic.net.
 training.apnic.net. NS ns1.apnic.net.
 training.apnic.net. NS ns2.apnic.net.

• How to get to ns1 and ns2… We need the addresses

• Add glue records to so that resolvers can reach ns1 and ns2
 ns1.training.apnic.net. A 10.0.0.1
 ns2.training.apnic.net. A 10.0.0.2
Glue

- Glue is ‘non-authoritative’ data
- Don’t include glue for servers that are not in sub zones

```
training.apnic.net.   NS   ns1.training.apnic.net.
training.apnic.net.   NS   ns2.training.apnic.net.
training.apnic.net.   NS   ns2.apnic.net.
training.apnic.net.   NS   ns1.apnic.net.
ns1.training.apnic.net. A  10.0.0.1
Ns2.training.apnic.net. A  10.0.0.2
```

Only this record needs glue
Delegating training.apnic.net. from apnic.net.

training.apnic.net

- Setup minimum two servers
- Create zone file with NS records
- Add all training.apnic.net data

apnic.net

- Add NS records and glue
- Make sure there is no other data from the training.apnic.net. zone in the zone file
Questions ?
Retrieving BIND

• HTTP, FTP
 – Internet Systems Consortium
 • http://www.isc.org

• Other packages
 – OpenSSL
 • Will be needed for DNSSEC
BIND

• Version 9
 – Current version (9.9.2)
 • Release
 • Release Candidate (Betas)
 • Snapshots (Alphas)
 – Never Use Snapshots on production servers

• Getting BIND
Unpacking BIND9

- tar xvfz bind-9.9.2.tar.gz
 - Uncompresses and creates directory
 - bind-9.9.2

- What's in there?
 - A lot of stuff (dig, libraries etc)
 - ./configure (script)
 - ./doc/arm/Bv9ARM.html
 - Administrator's Reference Manual
 - Good source!!!
Building BIND9

• must be in the BIND 9.9.2 directory

> ./configure –with-openssl
 – Determine the appropriate includes and compiler settings

> make
 – Build and compile

> make install
 – sudo (if not root)
 – Install BIND
What happens

• Executables
 – /usr/local/sbin
 • dnssec-keygen, dnssec-makekeyset, dnssec-signkey, dnssec-signzone
 • lwresd, named-checkconf, named-checkzone
 • rndc, rndc-confgen
 • named
 – /usr/local/bin
 • dig
 • host, isc-config.sh, nslookup
 • nsupdate

• And libraries included
Testing

- Make sure right version is now installed

 > named -v
 > BIND 9.9.2
Bind DNSSEC Tools

• Named
• dnssec-keygen
 – Generate keys of various types
• dnssec-signzone
 – Sign a zone
• dig
 – Troubleshoot: Usage: dig +dnssec @…
• named-checkzone & named-checkconf
 – syntax check for zonefiles and named.conf
Server/Named Configuration

- The configuration file is called “named.conf”
- Documentation in <src>/doc/arm/Bv9ARM.html
- Turn on logging for troubleshooting
 - Several categories
 - Categories are processed in one or more channels
 - Channels specify where the output goes
Questions?
Recursive Server
Overview

- Recursive Service
- Root server list
- localhost
- 0.0.127.in-addr.arpa
- named.conf
Recursive Server

• Used to lookup data by applications
• Needs to know how to reach top of DNS
• Also should stop some queries
 – localhost, 127.0.0.1
• Files
 – named.conf
 – root.hints
 – localhost zone
 – 0.0.127.in-addr.arpa zone
Root server list

- List of the 13 root server records
- Where to get it
 - ftp rs.internic.net
 - anonymous login
 - cd domain
 - get one of these files (they are the same)
 - db.cache
 - named.root
 - named.cache
What it looks like

; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers (e.g. reference this file in the
"cache . <file>"

; configuration file of BIND domain name servers).

; This file is made available by InterNIC under anonymous FTP as

; file /domain/named.root on server FTP.INTERNIC.NET
; -OR- RS.INTERNIC.NET

; last update: Feb 04, 2008 related version of root zone: 2008020400

; formerly NS.INTERNIC.NET
.
 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
A.ROOT-SERVERS.NET. 3600000 AAAA 2001:503:BA3E::2:30

; operated by WIDE
.
 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33
M.ROOT-SERVERS.NET. 3600000 AAAA 2001:dc3::35

; End of File
localhost

- Loopback name in operating systems
- Means 127.0.0.1
- Queries for this shouldn't use recursion
- So we will configure a file to define the localhost. zone
 - Note the "."
localhost file

$TTL 86400
@ IN SOA localhost. root.localhost. (1 ; serial
1800 ; refresh
900 ; retry
69120 ; expire
1080 ; negative cache ttl)

NS localhost.
A 127.0.0.1
Reverse for localhost

• Since we want "localhost -> 127.0.0.1" we want to have "127.0.0.1 -> localhost"

• We need a zone called 0.0.127.in-addr.arpa.
0.0.127.in-addr.arpa file

$TTL 86400
@ IN SOA localhost. root.localhost. (
 1 ; serial
 1800 ; refresh
 900 ; retry
 69120 ; expire
 1080 ; negative cache ttl
)

NS localhost.

1 PTR localhost.
Assembling the files

• Here's my directory:

 `[/var/named/recursive] % ls`
 `0.0.127.in-addr.arpa localhost named.root`

• The directory name and file names will be in named.conf

• Now create a named.conf file in the same directory
named.conf

options {
 directory "/var/named/recursive";
 recursion yes; // by default recursion is on
};
zone "." {
 type hint;
 file "named.root";
};
zone "localhost." {
 type master;
 file "localhost";
};
zone "0.0.127.in-addr.arpa." {
 type master;
 file "0.0.127.in-addr.arpa";
};
Running the server

• From the directory

 `% named -g -c named.conf`
Testing the server

• Just to show it is alive

% dig @127.0.0.1 www.arin.net
; <<>> DiG 9.2.2rc1 <<>> @127.0.0.1 www.arin.net
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16580
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 10, ADDITIONAL: 0

;; QUESTION SECTION:
;www.arin.net. IN A

;; ANSWER SECTION:
www.arin.net. 10800 IN A 192.149.252.17
www.arin.net. 10800 IN A 192.149.252.16

;; AUTHORITY SECTION:
arin.net. 10800 IN NS arrowroot.arin.net.
(and so on)

;; Query time: 3066 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Wed Feb 19 11:07:05 2003
;; MSG SIZE rcvd: 251
Questions ?
Reverse DNS
Overview

- Principles
- Creating reverse zones
- Setting up nameservers
- Reverse delegation procedures
What is ‘Reverse DNS’?

• ‘Forward DNS’ maps names to numbers
 – svc00.apnic.net -> 202.12.28.131

• ‘Reverse DNS’ maps numbers to names
 – 202.12.28.131 -> svc00.apnic.net
Reverse DNS - why bother?

• Service denial
 • That only allow access when fully reverse delegated eg. anonymous ftp

• Diagnostics
 • Assisting in trace routes etc

• SPAM identifications

• Registration responsibilities
Principles – DNS tree

- Mapping numbers to names - ‘reverse DNS’

Root DNS

- net
- edu
- com
- arpa
- sg

- RIR
- ISP

Customer

whois

apnic

202

64

22

203

210

211..

22 .64 .202 .in-addr .arpa
Creating reverse zones

• Same as creating a forward zone file
 – SOA and initial NS records are the same as normal zone
 – Main difference
 • need to create additional PTR records

• Can use BIND or other DNS software to create and manage reverse zones
 – Details can be different
Creating reverse zones - contd

• Files involved
 – Zone files
 • Forward zone file
 – e.g. db.domain.net
 • Reverse zone file
 – e.g. db.192.168.254
 – Config files
 • <named.conf>
 – Other
 • Hints files etc.
 – Root.hints
Start of Authority (SOA) record

```plaintext
<domain.name.>  CLASS  SOA  <hostname.domain.name.>
    <mailbox.domain.name> (  
        <serial-number>  
        <refresh> 
        <retry>  
        <expire>  
        <negative-caching> )  

253.253.192.in-addr.arpa.
```
Pointer (PTR) records

- Create pointer (PTR) records for each IP address

```
```

or

```
131 IN PTR svc00.apnic.net.
```
A reverse zone example

$ORIGIN 1.168.192.in-addr.arpa.
@ 3600 IN SOA test.company.org. (sys\.admin.company.org. 2002021301 ; serial 1h ; refresh 30M ; retry 1W ; expiry 3600) ; neg. answ. ttl

NS ns.company.org.
NS ns2.company.org.

1 PTR gw.company.org.
 router.company.org.

2 PTR ns.company.org.

;auto generate: 65 PTR host65.company.org
$GENERATE 65-127 $ PTR host$.company.org.
Setting up the primary nameserver

• Add an entry specifying the primary server to the named.conf file

```
zone "<domain-name>" in {
  type master;
  file "<path-name>";
};
```

• `<domain-name>`

• `<type master>`
 – Define the name server as the primary

• `<path-name>`
 – location of the file that contains the zone records
Setting up the secondary nameserver

- Add an entry specifying the primary server to the **named.conf** file

```plaintext
zone "<domain-name>" in {
    type slave;
    file "<path-name>";
    Masters { <IP address> ; };
};
```

- `<type slave>` defines the name server as the secondary
- `<ip address>` is the IP address of the primary name server
- `<domain-name>` is same as before
- `<path-name>` is where the back-up file is
Reverse delegation requirements

- /24 Delegations
 - Address blocks should be assigned/allocated
 - At least two name servers

- /16 Delegations
 - Same as /24 delegations
 - APNIC delegates entire zone to member
 - Recommend APNIC secondary zone

- < /24 Delegations
 - Read “classless in-addr.arpa delegation”
APNIC & ISPs responsibilities

• APNIC
 – Manage reverse delegations of address block distributed by APNIC
 – Process organisations requests for reverse delegations of network allocations

• Organisations
 – Be familiar with APNIC procedures
 – Ensure that addresses are reverse-mapped
 – Maintain nameservers for allocations
 • Minimise pollution of DNS
Subdomains of in-addr.arpa domain

• Example: an organisation given a /16
 – 192.168.0.0/16 (one zone file and further delegations to downstreams)
 – 168.192.in-addr.arpa zone file should have:

 0.168.192.in-addr.arpa. NS ns1.organisation0.com.
 0.168.192.in-addr.arpa. NS ns2.organisation0.com.
Subdomains of in-addr.arpa domain

• Example: an organisation given a /20
 – 192.168.0.0/20 (a lot of zone files!) – have to do it per /24
 – Zone files

 0.168.192.in-addr.arpa.
 1.168.192.in-addr.arpa.
 2.168.192.in-addr.arpa.

 15.168.192.in-addr.arpa.
Reverse delegation procedures

• Standard APNIC database object,
 – can be updated through myAPNIC.

• Nameserver/domain set up verified before being submitted to the database.

• Protection by maintainer object
 – (current auths: CRYPT-PW, PGP)

• Any queries
 – Contact <helpdesk@apnic.net>
Whois domain object

admin-c: DNS3-AP
tech-c: DNS3-AP
zone-c: DNS3-AP
nserver: ns.telstra.net
nserver: rs.arin.net
nserver: ns.myapnic.net
nserver: svc00.apnic.net
nserver: ns.apnic.net
mnt-by: MAINT-APNIC-AP
mnt-lower: MAINT-DNS-AP
changed: inaddr@apnic.net 19990810
source: APNIC

Reverse Zone
Contacts
Name Servers
Maintainers (protection)
Removing lame delegations

• Objective
 – To repair or remove persistently lame DNS delegations

• DNS delegations are lame if:
 – Some or all of the registered DNS nameservers are unreachable or badly configured

• APNIC has formal implementation of the lame DNS reverse delegation procedures
Questions?
DNS and IPv6
IPv6 Representation in the DNS

• Forward lookup support: Multiple RR records for name to number
 – AAAA (Similar to A RR for IPv4)

• Reverse lookup support:
 – Reverse nibble format for zone ip6.arpa

• Multiple addresses are possible for any given name
 – Ex: in a multi-homed situation

• Can assign A records and AAAA records to a given name/domain

• Can also assign separate domains for IPv6 and IPv4
Sample Forward Lookup File

apnic.net. 7200 IN SOA ns.apnic.net. admin.apnic.net.
(2010020901 ; Serial 12h ; Refresh 12 hours 4h ; Retry 4 hours 4d ; Expire 4 days 2h ; Negative cache 2 hours)

apnic.net. 7200 IN NS
ns.apnic.net.

server1.apnic.net. 3600 IN A 193.0.1.162

2001:0db8:1230::ABC:1 3600 IN AAAA
IPv6 Reverse Lookups – PTR records

• Similar to the IPv4 reverse record
 b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.ip6.arpa.
 IN PTR test.ip6.example.com.

• Example: reverse name lookup for a host with address
 3ffe:8050:201:1860:42::1

$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.4.0.0 14400 IN PTR host.example.com.
Sample Reverse Lookup File

$ORIGIN 0.0.0.0.4.3.2.1.8.B.D.0.1.0.0.2

apnic.net. 7200 IN SOA ns.apnic.net. admin.apnic.net.
 (2010020901 ; Serial
 12h ; Refresh 12 hours
 4h ; Retry 4 hours
 4d ; Expire 4 days
 2h ; Negative cache 2 hours)

apnic.net. 7200 IN NS ns.apnic.net.

1.C.B.A.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 3600 IN PTR server1.apnic.net.
IPv6 in the Root Servers

- http://www.internic.net/zones/named.root
- 9 of 13 root servers have IPv6 AAAA records
 - C, E, G root servers don’t have IPv6 capability yet
 - root.hints file contains the IP address of the root servers
IPv6 in TLDs

- Total number of TLDs: 313
- TLDs with IPv6: 266
- Registered domains with AAAA records
 - COM: 760,678 of 101,872,424 domains
 - NET: 170,062 of 14,624,650 domains

Source: Global IPv6 Deployment Progress Report
http://bgp.he.net/ipv6-progress-report.cgi
Using BIND with IPv6

- **BIND options for IPv6**
 - Listen-on-v6 { };
 - Query-source-v6 { };
 - Use-v6-udp-ports or avoid-v6-udp-ports
 - Transfer-source-v6

- **AAAA records**

- **PTR records**
 - In named.conf
 Zone “1.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa” {
 Type master;
 File “ipv6ptr.zone”;
 };
 - In zone file
 4.3.2.1.0.0.0.1.0.0.0.0. IN PTR www.example.com
Questions?

Thank You