APNIC eLearning: IPSec Basics

Contact: training@apnic.net
Overview

- Virtual Private Networks
- What is IPsec?
- Benefits of IPsec
- Tunnel and Transport Mode
- IPsec Architecture
- Security Associations and ISAKMP
- Authentication Header (AH)
- Encapsulating Security Payload (ESP)
- Internet Key Exchange (IKE)
- IPSec Tunnel Creation
Virtual Private Network

- Creates a secure tunnel over a public network
 - Client to firewall
 - Router to router
 - Firewall to firewall
- Uses the Internet as the public backbone to access a secure private network
 - Remote employees can access their office network
- VPN Protocols
 - PPTP (Point-to-Point tunneling Protocol)
 - L2F (Layer 2 Forwarding Protocol)
 - L2TP (Layer 2 Tunneling Protocol)
 - IPSec (Internet Protocol Security)
IPsec

- Provides Layer 3 security (RFC 2401)
 - Transparent to applications (no need for integrated IPSec support)

- A set of protocols and algorithms used to secure IP data at the network layer

- Combines different components:
 - Security associations (SA)
 - Authentication headers (AH)
 - Encapsulating security payload (ESP)
 - Internet Key Exchange (IKE)

- A security context for the VPN tunnel is established via the ISAKMP
Why IPsec?

• Internet Protocol (IP) is not secure
 – IP protocol was designed in the early stages of the Internet where security was not an issue
 – All hosts in the network are known

• Possible security issues
 – Source spoofing
 – Replay packets
 – No data integrity or confidentiality
IPsec Standards

- RFC 4301 “The IP Security Architecture”
 - Defines the original IPsec architecture and elements common to both AH and ESP
- RFC 4302
 - Defines authentication headers (AH)
- RFC 4303
 - Defines the Encapsulating Security Payload (ESP)
- RFC 2408
 - ISAKMP
- RFC 5996
 - IKE v2 (Sept 2010)
- RFC 4835
 - Cryptographic algorithm implementation for ESP and AH
Benefits of IPsec

• Confidentiality
 – By encrypting data

• Integrity
 – Routers at each end of a tunnel calculates the checksum or hash value of the data

• Authentication
 – Signatures and certificates
 – All these while still maintaining the ability to route through existing IP networks

“IPsec is designed to provide interoperable, high quality, cryptographically-based security for IPv4 and IPv6” - (RFC 2401)
Benefits of IPsec

• Offers Confidentiality (encrypting data), Integrity, and Authentication

• Data integrity and source authentication
 – Data “signed” by sender and “signature” is verified by the recipient
 – Modification of data can be detected by signature “verification”
 – Because “signature” is based on a shared secret, it gives source authentication

• Anti-replay protection
 – Optional; the sender must provide it but the recipient may ignore

• Key management
 – IKE – session negotiation and establishment
 – Sessions are rekeyed or deleted automatically
 – Secret keys are securely established and authenticated
 – Remote peer is authenticated through varying options
Different Layers of Encryption

- **Network Layer** - IPsec
- **Link Layer Encryption**
- **Application Layer** - SSL, PGP, SSH, HTTPS
IPsec Modes

- **Tunnel Mode**
 - Entire IP packet is encrypted and becomes the data component of a new (and larger) IP packet.
 - Frequently used in an IPsec site-to-site VPN

- **Transport Mode**
 - IPsec header is inserted into the IP packet
 - No new packet is created
 - Works well in networks where increasing a packet’s size could cause an issue
 - Frequently used for remote-access VPNs
Tunnel vs. Transport Mode IPsec

<table>
<thead>
<tr>
<th>IP Header</th>
<th>TCP Header</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Without IPsec

<table>
<thead>
<tr>
<th>IP Header</th>
<th>IPsec Header</th>
<th>TCP Header</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transport Mode IPsec

<table>
<thead>
<tr>
<th>New IP Header</th>
<th>IPsec Header</th>
<th>IP Header</th>
<th>TCP Header</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tunnel Mode IPsec
The Internet Key Exchange

Establishes the tunnel

Key management

Security Protocols

Encapsulating Security Payload

Authentication Header

AH

ESP

IPsec Security Policy

IKE
Security Associations (SA)

- A collection of parameters required to establish a secure session
- Uniquely identified by three parameters consisting of
 - Security Parameter Index (SPI)
 - IP destination address
 - Security protocol (AH or ESP) identifier
- An SA is unidirectional
 - Two SAs required for a bidirectional communication
- A single SA can be used for AH or ESP, but not both
 - must create two (or more) SAs for each direction if using both AH and ESP
How to Set Up an SA

• Manually
 – Sometimes referred to as “manual keying”
 – You configure on each node:
 • Participating nodes (i.e. traffic selectors)
 • AH and/or ESP [tunnel or transport]
 • Cryptographic algorithm and key

• Automatically
 – Using IKE (Internet Key Exchange)
ISAKMP

• Internet Security Association and Key Management Protocol
• Defined by RFC 2408
• Used for establishing Security Associations (SA) and cryptographic keys
• Only provides the framework for authentication and key exchange, but key exchange independent
• Key exchange protocols
 – Internet Key Exchange (IKE) and Kerberized Internet Negotiation of Keys (KINK)
Authentication Header (AH)

- Provides source authentication and data integrity
 - Protection against source spoofing and replay attacks
- Authentication is applied to the entire packet, with the mutable fields in the IP header zeroed out
- If both AH and ESP are applied to a packet, AH follows ESP
- Operates on top of IP using protocol 51
- In IPv4, AH protects the payload and all header fields except mutable fields and IP options (such as IPSec option)
Encapsulating Security Payload (ESP)

- Uses IP protocol 50
- Provides all that is offered by AH, plus data confidentiality
 - It uses symmetric key encryption
- Must encrypt and/or authenticate in each packet
 - Encryption occurs before authentication
- Authentication is applied to data in the IPsec header as well as the data contained as payload
Packet Format Alteration for AH Transport Mode

Authentication Header

Without AH

<table>
<thead>
<tr>
<th>Original IP Header</th>
<th>TCP/UDP</th>
<th>Data</th>
</tr>
</thead>
</table>

With AH

<table>
<thead>
<tr>
<th>Original IP Header</th>
<th>AH Header</th>
<th>TCP/UDP</th>
<th>Data</th>
</tr>
</thead>
</table>

Authenticated except for mutable fields in IP header:
- ToS
- TTL
- Header Checksum
- Offset
- Flags
Packet Format Alteration for ESP
Transport Mode

Encapsulating Security Payload

Before applying ESP:

| Original IP Header | TCP/UDP | Data |

After applying ESP:

| Original IP Header | ESP Header | TCP/UDP | Data | ESP Trailer | ESP Authentication |

Encrypted

Authenticated
Packet Format Alteration for AH Tunnel Mode

Authentication Header

Before applying AH:
- Original IP Header
- TCP/UDP
- Data

After applying AH:
- New IP Header
- AH Header
- Original IP Header
- Data

Authenticated except for mutable fields in new IP header:
- ToS
- TTL
- Header Checksum
- Offset
- Flags
Packet Format Alteration for ESP Tunnel Mode

Encapsulating Security Payload

Before applying ESP:

| Original IP Header | TCP/UDP | Data |

After applying ESP:

| New IP Header | ESP Header | Original IP Header | TCP/UDP | Data | ESP Trailer | ESP Authentication |

Encrypted

Authenticated
Internet Key Exchange (IKE)

• “An IPsec component used for performing mutual authentication and establishing and maintaining Security Associations.” (RFC 5996)

• Typically used for establishing IPsec sessions

• A key exchange mechanism

• Five variations of an IKE negotiation:
 – Two modes (aggressive and main modes)
 – Three authentication methods (pre-shared, public key encryption, and public key signature)

• Uses UDP port 500
IKE Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main mode</td>
<td>Three exchanges of information between IPsec peers. Initiator sends one or more proposals to the other peer (responder) Responder selects a proposal</td>
</tr>
<tr>
<td>Aggressive Mode</td>
<td>Achieves same result as main mode using only 3 packets First packet sent by initiator containing all info to establish SA Second packet by responder with all security parameters selected Third packet finalizes authentication of the ISAKMP session</td>
</tr>
<tr>
<td>Quick Mode</td>
<td>Negotiates the parameters for the IPsec session. Entire negotiation occurs within the protection of ISAKMP session</td>
</tr>
</tbody>
</table>
Internet Key Exchange (IKE)

• Phase I
 – Establish a secure channel (ISAKMP SA)
 – Using either main mode or aggressive mode
 – Authenticate computer identity using certificates or pre-shared secret

• Phase II
 – Establishes a secure channel between computers intended for the transmission of data (IPsec SA)
 – Using quick mode
Overview of IKE

1. Traffic which needs to be protected

 IPsec Peer

2. IKE Phase 1

 Secure communication channel

3. IKE Phase 2

 IPsec Tunnel

4. Secured traffic exchange
IKE Phase 1 (Main Mode)

• Main mode negotiates an ISAKMP SA which will be used to create IPsec SAs

• Three steps
 – SA negotiation (encryption algorithm, hash algorithm, authentication method, which DF group to use)
 – Do a Diffie-Hellman exchange
 – Provide authentication information
 – Authenticate the peer
IKE Phase 1 (Main Mode)

1. Negotiate IKE Policy
 - IKE Message 1 (SA proposal)
 - IKE Message 2 (accepted SA)

2. Authenticated DH Exchange
 - IKE Message 3 (DH public value, nonce)
 - IKE Message 4 (DH public value, nonce)

3. Compute DH shared secret and derive keying material

4. Protect IKE Peer Identity
 - IKE Message 5 (Authentication material, ID)
 - IKE Message 6 (Authentication material, ID) (Encrypted)
IKE Phase 1 (Aggressive Mode)

- Uses 3 (vs 6) messages to establish IKE SA
- No denial of service protection
- Does not have identity protection
- Optional exchange and not widely implemented
IKE Phase 2 (Quick Mode)

- All traffic is encrypted using the ISAKMP Security Association
- Each quick mode negotiation results in two IPsec Security Associations (one inbound, one outbound)
- Creates/refreshes keys
IKE Phase 2 (Quick Mode)

1. Message 1 (authentication/keying material and SA proposal)
2. Validate message 1
3. Message 2 (authentication/keying material and accepted SA)
4. Validate message 2
5. Message 3 (hash for proof of integrity/authentication)
6. Validate message 3
7. Compute keying material

Initiator

Responder

Internet
IPsec Best Practices

• Use IPsec to provide integrity in addition to encryption.
 – Use ESP option

• Use strong encryption algorithms 3DES and AES instead of DES

• Use SHA instead of MD5 as a hashing algorithm

• Reduce the lifetime of the Security Association (SA) by enabling Perfect Forward Secrecy (PFS)
 – Increases processor burden so do this only if data is highly sensitive
Questions

• Please remember to fill out the feedback form
 – <survey-link>

• Slide handouts will be available after completing the survey
Thank You!

End of Session