APNIC eLearning: Network Security Fundamentals

Contact: training@apnic.net

eSEC01_v1.0

Overview

- Goals of Information Security
- Attacks on Different Layers
- Attack Examples
- Trusted Network
- Access Control
- Cryptography
- Public Key Infrastructure
- VPN and IPSec
- Security Management
- Whois Database

Goals of Information Security

APNIC

Why Security?

- The Internet was initially designed for connectivity
 - Trust assumed
 - We do more with the Internet nowadays
 - Security protocols are added on top of the TCP/IP
- Fundamental aspects of information must be protected
 - Confidential data
 - Employee information
 - Business models
 - Protect identity and resources
- We can't keep ourselves isolated from the Internet
 - Most business communications are done online
 - We provide online services
 - We get services from third-party organizations online

Attacks on Different Layers

TCP Attacks

- Exploits the TCP 3-way handshake
- Attacker sends a series of SYN packets without replying with the ACK packet
- Finite queue size for incomplete connections

TCP Attacks

1

- Exploits the TCP 3-way handshake
- Attacker sends a series of SYN packets without replying with the ACK packet
- Finite queue size for incomplete connections

DNS Cache Poisoning

Common Types of Attack

- Ping sweeps and port scans reconnaissance
- Sniffing capture packet as they travel through the network
- Man-in-the-middle attack intercept messages that are intended for a valid device
- Spoofing set up a fake device and trick others to send messages to it
- Hijacking take control of a session
- Denial of Service (DoS) and Distributed DoS (DDoS)

Trusted Network

- Standard defensive-oriented technologies
 - Firewall first line of defense
 - Intrusion Detection
- Build TRUST on top of the TCP/IP infrastructure
 - Strong authentication

APN

- Two-factor authentication
- something you have + something you know
- Public Key Infrastructure (PKI)

Access Control

- Access control ability to permit or deny the use of an object by a subject.
- It provides 3 essential services (known as AAA):
 - Authentication (who can login)
 - Authorization (what authorized users can do)
 - Accountability (identifies what a user did)

Cryptography

- Has evolved into a complex science in the field of information security
- Encryption process of transforming <u>plaintext</u> to <u>ciphertext</u> using a <u>cryptographic key</u>
- Symmetric key cryptography uses a single key to encrypt and decrypt information. Also known as private key.
 – Includes DES, 3DES, AES, IDEA, RC5
- Asymmetric key cryptography separate keys for encryption and decryption (public and private key pairs)
 - Includes RSA, Diffie-Hellman, El Gamal

Public Key Infrastructure

- Combines public key cryptography and digital signatures to ensure confidentiality, integrity, authentication, nonrepudiation, and access control
- <u>Digital certificate</u> basic element of PKI; secure credential that identifies the owner
- Basic Components:
 - Certificate Authority (CA)
 - Registration Authority (RA)
 - Repository
 - Archive

Security on Different Layers

Application	Layer 7: DNS, DHCP, HTTP, FTP, IMAP, LDAP, NTP, Radius, SSH, SMTP, SNMP,
Presentation	Telnet, TFTP HTTPS, DNSSEC, PGP, SMIME
Session	Layer
Transport	Layer 4: TCP, UDP TLS, SSL, SSH
Network	Layer 3: IPv4, IPv6, ICMP, IPSec
Data Link	Layer 2: VTP, PPTP, Token Ring
Physical	IEEE 802.1X, PPP & PPTP

Virtual Private Network

- Creates a secure tunnel over a public network
 - Client-to-firewall, router-to-router, firewall-to-firewall
- VPN Protocol Standards
 - PPTP (Point-to-Point tunneling Protocol)
 - L2F (Layer 2 Forwarding Protocol)
 - L2TP (Layer 2 Tunneling Protocol)
 - IPSec (Internet Protocol Security)

Different Layers of Encryption

APNIC

IPSec

- Provides Layer 3 security
- Tunnel or Transport mode
 - Tunnel mode entire IP packet is encrypted
 - Transport mode IPSec header is inserted in to the packet
- Combines different components:
 - Security associations, Authentication headers (AH), Encapsulating security payload (ESP), Internet Key Exchange (IKE)
- A security context for the VPN tunnel is established via the ISAKMP

Internet Security Protocols

- Layer 4 security: TLS, SSL, SSH
- SSL/TLS (Secure Socket Layer / Transport Layer Security)
 - Session-based encryption and authentication for secure communication (prevent eavesdropping)
 - TLS is the IETF standard succeeding SSL
 - Uses RSA asymmetric key system
- Secure Shell (SSH2) secure channel between devices, replaces telnet and rsh

Security Management

- Network security is a part of a bigger information security plan
- Policies vs. Standards vs. Guidelines
- Must develop and implement comprehensive security policy
 - Minimum password length, frequency of password change
 - Access of devices, host firewalls
 - User creation/deletion process
 - Data signing/encryption
 - Encrypting all communication (remote access)
 - Use of digital certificates
- Disaster Recovery and Attack Mitigation Plan

Whois Database

- Public network management database
- Tracks network resources
 - IP addreses, ASNs, reverse domains, routing
- Records administrative info
 - Contacts (person/role), authorization (maintainer)
- All Members must register their resources in the Whois database
- Must keep records up to date at all times

Questions

- Please remember to fill out the feedback form
 - <survey-link>
- Slide handouts will be available after completing the survey

APNIC Helpdesk Chat

Thank You!

End of Session

