APNIC eLearning: Network Security Fundamentals

Contact: training@apnic.net
Overview

- Goals of Information Security
- Attacks on Different Layers
- Attack Examples
- Trusted Network
- Access Control
- Cryptography
- Public Key Infrastructure
- VPN and IPSec
- Security Management
- Whois Database
Goals of Information Security

- **Confidentiality**: prevents unauthorized use or disclosure of information
- **Integrity**: safeguards the accuracy and completeness of information
- **Availability**: authorized users have reliable and timely access to information
Why Security?

• The Internet was initially designed for connectivity
 – Trust assumed
 – We do more with the Internet nowadays
 – Security protocols are added on top of the TCP/IP

• Fundamental aspects of information must be protected
 – Confidential data
 – Employee information
 – Business models
 – Protect identity and resources

• We can’t keep ourselves isolated from the Internet
 – Most business communications are done online
 – We provide online services
 – We get services from third-party organizations online
Attacks on Different Layers

<table>
<thead>
<tr>
<th>Layer 7: DNS, DHCP, HTTP, FTP, IMAP, LDAP, NTP, Radius, SSH, SMTP, SNMP, Telnet, TFTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Poisoning, Phishing, SQL injection, Spam/Scam</td>
</tr>
<tr>
<td>Layer 5: SMB, NFS, Socks</td>
</tr>
<tr>
<td>TCP attacks, Routing attack, SYN flooding, Sniffing</td>
</tr>
<tr>
<td>Layer 4: TCP, UDP</td>
</tr>
<tr>
<td>Layer 3: IPv4, IPv6, ICMP, ICMPv6, UDP, TCP, ICMPv6, TLS/SSL, SSH, FTP, Telnet</td>
</tr>
<tr>
<td>Ping/ICMP Flood</td>
</tr>
<tr>
<td>Layer 2: PPTP, Token Ring</td>
</tr>
<tr>
<td>ARP spoofing, MAC flooding</td>
</tr>
</tbody>
</table>

OSI Reference Model

- **Application**
- **Presentation**
- **Session**
- **Transport**
- **Network**
- **Data Link**
- **Physical**

TCP/IP Model

- **Application**
- **Transport**
- **Internet**
- **Network Access**

- **Layer 2: PPTP, Token Ring**
- **Layer 3: IPv4, IPv6, ICMP, ICMPv6, UDP, TCP, ICMPv6, TLS/SSL, SSH, FTP, Telnet**
- **Layer 4: TCP, UDP**
- **Layer 5: SMB, NFS, Socks**
- **Layer 7: DNS, DHCP, HTTP, FTP, IMAP, LDAP, NTP, Radius, SSH, SMTP, SNMP, Telnet, TFTP**

APNIC

TCP/IP Model
TCP Attacks

• Exploits the TCP 3-way handshake
• Attacker sends a series of SYN packets without replying with the ACK packet
• Finite queue size for incomplete connections
TCP Attacks

- Exploits the TCP 3-way handshake
- Attacker sends a series of SYN packets without replying with the ACK packet
- Finite queue size for incomplete connections
DNS Cache Poisoning

1. I want to access www.example.com

2. DNS Caching Server

3. Root/GTLD

I want to access www.example.com

www.example.com 192.168.1.1

www.example.com 192.168.1.99

QID=64569
QID=64570
QID=64571 match!

QID=64571

www.example.com 192.168.1.1

QID=64571

ns.example.com
Common Types of Attack

- Ping sweeps and port scans - reconnaissance
- Sniffing – capture packet as they travel through the network
- Man-in-the-middle attack – intercept messages that are intended for a valid device
- Spoofing - set up a fake device and trick others to send messages to it
- Hijacking – take control of a session
- Denial of Service (DoS) and Distributed DoS (DDoS)
Trusted Network

• Standard defensive-oriented technologies
 – Firewall – first line of defense
 – Intrusion Detection

• Build TRUST on top of the TCP/IP infrastructure
 – Strong authentication
 • Two-factor authentication
 • something you have + something you know
 – Public Key Infrastructure (PKI)
Access Control

• Access control - ability to permit or deny the use of an object by a subject.

• It provides 3 essential services (known as AAA):
 – Authentication (who can login)
 – Authorization (what authorized users can do)
 – Accountability (identifies what a user did)
Cryptography

• Has evolved into a complex science in the field of information security

• Encryption – process of transforming plaintext to ciphertext using a cryptographic key

• Symmetric key cryptography – uses a single key to encrypt and decrypt information. Also known as private key.
 – Includes DES, 3DES, AES, IDEA, RC5

• Asymmetric key cryptography – separate keys for encryption and decryption (public and private key pairs)
 – Includes RSA, Diffie-Hellman, El Gamal
Cryptography

Plaintext → ENCRYPTION ALGORITHM → Ciphertext → DECRYPTION ALGORITHM → Plaintext

Encryption Key

Decryption Key

Symmetric Key Cryptography

Shared Key

Asymmetric Key Cryptography

Public Key

Private Key

Shared Key

APNIC
Public Key Infrastructure

• Combines public key cryptography and digital signatures to ensure confidentiality, integrity, authentication, non-repudiation, and access control

• **Digital certificate** – basic element of PKI; secure credential that identifies the owner

• Basic Components:
 – Certificate Authority (CA)
 – Registration Authority (RA)
 – Repository
 – Archive
Security on Different Layers

- **Layer 2**: VTP, PPTP, Token Ring
- **Layer 3**: IPv4, IPv6, ICMP, IPSec
- **Layer 4**: TCP, UDP
- **Layer 5**: SMB, NFS, Socks
- **Layer 7**: DNS, DHCP, HTTP, FTP, IMAP, LDAP, NTP, Radius, SSH, SMTP, SNMP, Telnet, TFTP

- **Ping/ICMP Flood**, TCP attacks, Routing attack, SYN flooding, Sniffing
- **DNS Poisoning**, Phishing, SQL injection, Spam/Scam
- **ARP spoofing**, MAC flooding

- **IEEE 802.1X, PPP & PPTP**
- **HTTPS, DNSSEC, PGP, SMIME**
- **TLS, SSL, SSH**
- **IPSec**
- **IEEE 802.1X, PPP & PPTP**
Virtual Private Network

- Creates a secure tunnel over a public network
 - Client-to-firewall, router-to-router, firewall-to-firewall
- VPN Protocol Standards
 - PPTP (Point-to-Point tunneling Protocol)
 - L2F (Layer 2 Forwarding Protocol)
 - L2TP (Layer 2 Tunneling Protocol)
 - IPSec (Internet Protocol Security)
Different Layers of Encryption

- **Application Layer** – SSL, PGP, SSH, HTTPS
- **Network Layer** – IPSec
- **Link Layer Encryption**
IPSec

• Provides Layer 3 security

• Tunnel or Transport mode
 – Tunnel mode – entire IP packet is encrypted
 – Transport mode – IPSec header is inserted in to the packet

• Combines different components:
 – Security associations, Authentication headers (AH), Encapsulating security payload (ESP), Internet Key Exchange (IKE)

• A security context for the VPN tunnel is established via the ISAKMP
Internet Security Protocols

• Layer 4 security: TLS, SSL, SSH

• SSL/TLS (Secure Socket Layer / Transport Layer Security)
 – Session-based encryption and authentication for secure communication (prevent eavesdropping)
 – TLS is the IETF standard succeeding SSL
 – Uses RSA asymmetric key system

• Secure Shell (SSH2) – secure channel between devices, replaces telnet and rsh
Security Management

• Network security is a part of a bigger information security plan

• Policies vs. Standards vs. Guidelines

• Must develop and implement comprehensive security policy
 – Minimum password length, frequency of password change
 – Access of devices, host firewalls
 – User creation/deletion process
 – Data signing/encryption
 – Encrypting all communication (remote access)
 – Use of digital certificates

• Disaster Recovery and Attack Mitigation Plan
Whois Database

• Public network management database
• Tracks network resources
 – IP addresses, ASNs, reverse domains, routing
• Records administrative info
 – Contacts (person/role), authorization (maintainer)
• All Members must register their resources in the Whois database
• Must keep records up to date at all times
Questions

• Please remember to fill out the feedback form
 – <survey-link>

• Slide handouts will be available after completing the survey
APNIC Helpdesk Chat

Helpdesk

Monday - Friday
09:00 to 21:00 (UTC +10)

Email
helpdesk@apnic.net

Phone
+61 7 3858 3188

VoIP
helpdesk@voip.apnic.net

Fax
+ 61 7 3858 3199

Multi-language phone support
Basa Indonesia, Bengali, Cantonese, English, Filipino (Tagalog), Hindi, and Mandarin.

Frequently asked questions
Thank You!

End of Session