APNIC eLearning: IPv6 Overview

Contact: training@apnic.net

elP601_v1.0

Overview

- What is IPv6?
- Protocol Background
- New Functional Improvement
- IPv6 Addressing Models
- Protocol Header Comparison
- Interface ID
- Global Network Prefix
- IPv6 Address Distribution

What Is IPv6?

- IP stands for <u>Internet Protocol</u> which is one of the main pillars that supports the Internet today
- Current version of IP protocol is IPv4
- The new version of IP protocol is IPv6
- There was an IPv5 (Internet Stream Protocol) but it was assigned for experimental use [RFC1190]
- IPv6 was also called IPng in the early days of IPv6 protocol development stage

TCP/IP Protocol Structure

SMTP	ftp	DHCP	DNS	HTTP
UDP			ТСР	
ICMP	IGMP	IP		ARP RARP
DATA LINK PHYSICAL				

Protocol Background

- August 1990
 - First wakeup call by Solensky in IETF on IPv4 address exhaustion
- December 1994
 - IPng area were formed within IETF to manage IPng effort [RFC1719]
 - List of technical criteria was defined to choose IPng [RFC1726]
- January 1995
 - IPng director recommendation to use 128 bit address [RFC1752]
- December 1995
 - First version of IPv6 address specification [RFC1883]
- December 1998
 - Updated version changing header format from 1st version [RFC2460]

Why IPv6?

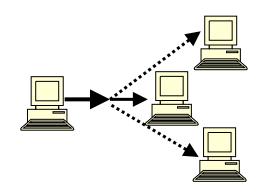
- IPv4 address exhaustion due to the decreasing supply of unallocated IPv4 addresses.
- IPv6 provides much larger IP address space than IPv4
 - IPv4 = 32 bits = 4,294,967,296 addressable devices
 - IPv6 = 128 bits = 3.4×10^{38} possible addressable devices
 - That's ~ 5 x 10^{28} addresses per person on the planet
- New functionality and improvement to IPv4

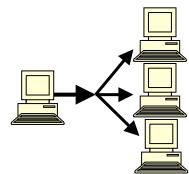
New Functional Improvement

- Increase from 32-bit to 128-bit address space
- Stateless auto-configuration
- Fixed header size (40 bytes) and 64-bit header alignment mean better router/switch performance
- No hop-by-hop segmentation (Path MTU discovery)
- Built-in features for multicast and anycast groups
- Eliminate triangular routing and simplifies deployment of mobile IP-based systems
- Built-in support for IPSec, VPN, and QoS tagging
- No more broadcast

IPv6 addressing model

- Unicast
 - Packet is sent to a single interface
- Anycast
 - Packet is sent to the nearest of
 - group interfaces (in terms of routing distance)
- Multicast


API


- Packet is sent to multiple interfaces

RFC

Protocol Header Comparison

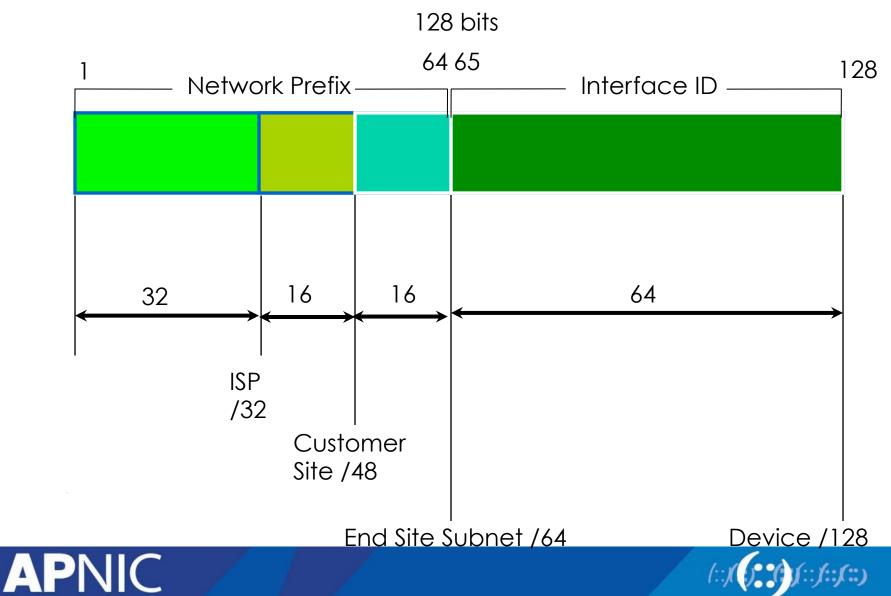
IPv4 Header

IPv6 Header

Version	IHL	Type of Service	Total Length		Version	Traffic Class	Flow Label			
Identification		Flags	Fragment Offset	Pav	load Length	Next Header Hop Limit				
Time to	e to Live Protocol Header Checksum		· · · · · · · · · · · · · · · · · · ·							
Source Address						Source Address				
Destination Address										
Options Padding			Padding							
Field's name kept from IPv4 to IPv6 Fields not kept in IPv6 Name and position changed in IPv6 New field in IPv6						Destination Address				

- IPv4 contains 10 basic header fields
- IPv6 contains 6 basic header fields
- IPv6 header has 40 octets in contrast to the 20 octets in IPv4
- So a smaller number of header fields and the header is 64-bit aligned to enable fast processing by current processors

Diagram Source: www.cisco.com


IPv6 addressing

- 128 bits of address space
- Hexadecimal values of eight 16 bit fields
 - X:X:X:X:X:X:X:X (X=16 bit number, ex: A2FE)
 - 16 bit number is converted to a 4 digit hexadecimal number
- Example:
 - FE80:DCE3:124C:C1A2:BA03:6735:EF1C:683D
- Abbreviated form of address
 - 2001:0DB8:0000:0000:0000:036E:1250:2B00
 - $\rightarrow 2001:DB8:0:0:0:36E:1250:2B00$
 - \rightarrow 2001:DB8::36E:1250:2B00 (:: can only be used once)

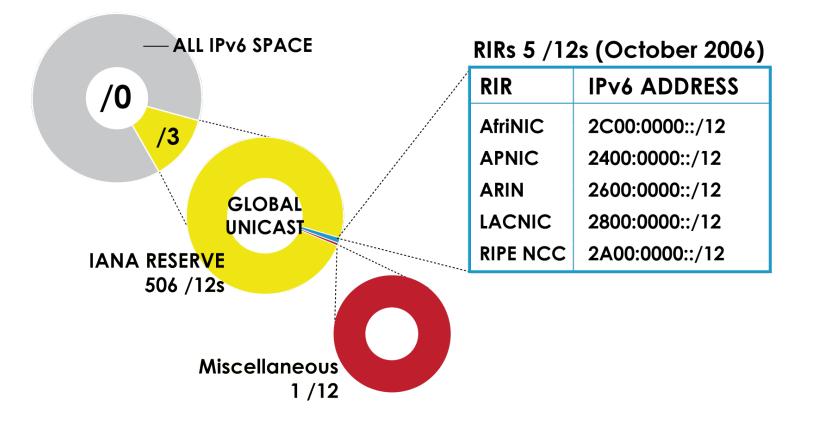
IPv6 Addressing Structure

Interface ID

- The lower-order 64-bit field addresses
- May be assigned in several different ways:
 - auto-configured from a 48-bit MAC address expanded into a 64-bit EUI-64
 - assigned via DHCPv6
 - manually configured
 - auto-generated pseudo-random number
 - possibly other methods in the future

Global Network Prefix

- IPV6 Global Unicast Address
 - Global Unicast Range: 001x
 - 1/8 of whole IPv6 address space
 - All five RIRs are given a /12 from the /3 to further distribute within the RIR region


2000::/3

- APNIC 2400:0000::/12
- ARIN 2600:0000::/12
- AfriNIC 2C00:0000::/12
- LACNIC 2800:0000::/12
- Ripe NCC 2A00:0000::/12

APNIC

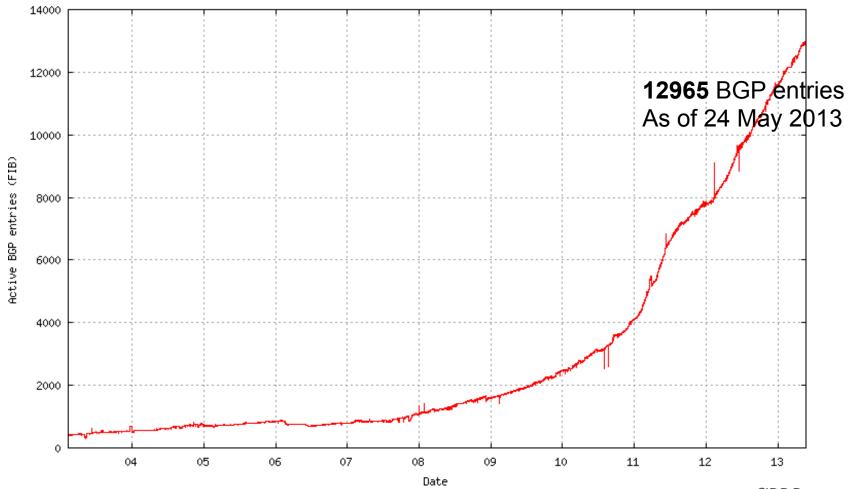
IPv6 Address Space

IPv6 Address Distribution

Kickstart your IPv6 network!

Already a Member account holder? Have IPv4 addresses and want IPv6 resources?

Members: Login and receive IPv6 addresses via MyAPNIC. New to APNIC? Only want to apply for IPv6 resources?


Find out how easy it is to get IPv6 addresses.

IPv6 BGP Routing Table

APNIC

CIDR Report

::)

Questions

- Please remember to fill out the feedback form
 - <survey-link>
- Slide handouts will be available after completing the survey


IPv6@APNIC

APNIC Helpdesk Chat

Thank you!

End of Session

APNIC

